YTTRIUM1

[Data in metric tons of yttrium oxide (Y₂O₃) equivalent content unless otherwise noted]

<u>Domestic Production and Use</u>: Rare earths were not mined domestically in 2016. Bastnaesite, a rare-earth fluorocarbonate mineral, was previously mined as a primary product at Mountain Pass, CA, which was put on care and maintenance in the fourth quarter of 2015. Yttrium was estimated to represent about 0.12% of the rare-earth elements in the Mountain Pass bastnaesite ore.

The leading end uses of yttrium were in ceramics, metallurgy, and phosphors. In ceramic applications, yttrium compounds were used in abrasives, bearings and seals, high-temperature refractories for continuous-casting nozzles, jet-engine coatings, oxygen sensors in automobile engines, and wear-resistant and corrosion-resistant cutting tools. In metallurgical applications, yttrium was used as a grain-refining additive and as a deoxidizer. Yttrium was used in heating-element alloys, high-temperature superconductors, and superalloys. In electronics, yttrium-iron garnets were components in microwave radar to control high-frequency signals. Yttrium was an important component in yttrium-aluminum-garnet laser crystals used in dental and medical surgical procedures, digital communications, distance and temperature sensing, industrial cutting and welding, nonlinear optics, photochemistry, and photoluminescence. Yttrium was used in phosphor compounds for flat-panel displays and various lighting applications.

Salient Statistics—United States:	2012	<u>2013</u>	2014	2015	2016 ^e
Production, mine ²	NA	NA	NA	NA	
Imports for consumption:					
Yttrium, alloys, compounds, and metal ^{e, 3}	160	200	200	360	200
Exports, in ore and concentrate	NA	NA	NA	NA	NA
Consumption, estimated ⁴	160	200	200	360	200
Price, e dollars:					
Yttrium oxide, per kilogram, minimum 99.999 purity 5	86–91	23-27	15–17	7–8	4
Yttrium metal, per kilogram, minimum 99.9% purity	141–151	60–70	55–65	45–51	34–36
Net import reliance ^{e, 2, 6} as a percentage of					
apparent consumption	>95	>95	>95	>95	100

Recycling: Insignificant.

<u>Import Sources (2012–15)</u>: Yttrium compounds: China, 67%; Estonia, 13%; Japan, 8%; Germany, 4%; and other, 8%. Nearly all imports of yttrium metal and compounds are derived from mineral concentrates produced in China. Import sources do not include yttrium contained in value-added intermediates and finished products.

Tariff: Item	Number	Normal Trade Relations 12–31–16
Rare-earth metals, scandium and yttrium,		
whether or not intermixed or interalloyed	2805.30.0000	5.0% ad val.
Mixtures of rare-earth oxides or of rare-earth chlorides	2846.90.2000	Free.
Yttrium-bearing materials and compounds		
containing by weight >19% to <85% Y ₂ O ₃	2846.90.4000	Free.
Other rare-earth compounds, including yttrium		
and other compounds	2846.90.8000	3.7% ad val.

<u>Depletion Allowance</u>: Monazite, thorium content, 22% (Domestic), 14% (Foreign); yttrium, rare-earth content, 14% (Domestic and foreign); and xenotime, 14% (Domestic and foreign).

Government Stockpile: In FY 2016, the Defense Logistics Agency (DLA) acquired 8.8 tons of yttrium oxide.

Stockpile Status—9-30-16⁷

		Disposal Plan	Disposals	
Material	Inventory	FY 2016	FY 2016	
Yttrium oxide	8.8	_	_	

YTTRIUM

Events, Trends, and Issues: China produced most of the world's supply of yttrium, from its weathered clay ionadsorption ore deposits in the southern Provinces—primarily Fujian, Guangdong, and Jiangxi—and from a lesser number of deposits in Guangxi and Hunan Provinces. Processing was primarily at facilities in Guangdong, Jiangsu, and Jiangxi Provinces.

In 2016, global consumption of yttrium oxide was estimated to be 3,000 to 6,000 tons. Globally, yttrium was mainly consumed in the form of high-purity oxide compounds for phosphors. Lesser amounts were consumed in ceramics, electronic devices, lasers, and metallurgical applications.

Owing to shrinking demand in some markets and excess supply, prices for yttrium metal and oxide continued to decrease in 2016, reaching historic lows. According to industry reports, increasing popularity of light-emitting-diode lighting over traditional fluorescent lighting has reduced the consumption of yttrium-based phosphors.

According to China's preliminary export statistics, yttrium oxide exports increased in 2016. During the first 8 months of 2016, China exported 1,1 70 tons of yttrium oxide, primarily to Japan (58%), the United States (14%), and Italy (10%). China's other year-to-date exports of yttrium included 10 kilograms of yttrium chloride, 1.05 tons of yttrium fluoride, 16.7 tons of unspecified yttrium compounds, and 20.4 tons of yttrium metal. China continued efforts to manage its rare-earth industry through industry consolidations, crackdowns on illegal production, and stockpiling.

The DLA announced the Fiscal Year 2017 National Defense Stockpile Annual Materials Plan. The plan included a maximum acquisition of 10 tons of yttrium oxide. In fiscal year 2016, the DLA acquired about 9 tons of yttrium oxide and planned to acquire additional material. The U.S. Department of Energy was seeking information from industry and other stakeholders on yttrium and other materials used in energy technologies.

World Mine Production and Reserves: World production of yttrium was almost entirely from China. In 2016, world production was estimated to be 5,000 to 7,000 tons. Programs to stem the undocumented production of rare earths in China were ongoing. Reserves of yttrium are associated with those of rare earths. Global reserves of yttrium oxide were estimated to be more than 500,000 tons. The leading countries for these reserves included Australia, Brazil, China, India, and the United States.

<u>World Resources</u>: The world's resources of yttrium are probably very large. Yttrium is associated with most rareearth deposits. It occurs in various minerals in differing concentrations and occurs in a wide variety of geologic environments and deposits, including alkaline granites and other intrusives, carbonatites, hydrothermal deposits, laterites, placers, and vein-type deposits. Although reserves may be sufficient to satisfy near-term demand at current rates of production, economics, environmental issues, and permitting and trade restrictions could affect the mining or availability of many of the rare-earth elements, including yttrium. Large resources of yttrium in monazite and xenotime are available worldwide in placer deposits, carbonatites, uranium ores, and weathered clay deposits (ion-adsorption ore). Additional resources of yttrium occur in apatite-magnetite-bearing rocks, deposits of niobium-tantalum minerals, non-placer monazite-bearing deposits, sedimentary phosphate deposits, and uranium ores.

<u>Substitutes</u>: Substitutes for yttrium are available for some applications but generally are much less effective. In most uses, especially in electronics, lasers, and phosphors, yttrium is generally not subject to substitution by other elements. As a stabilizer in zirconia ceramics, yttrium oxide may be substituted with calcium oxide or magnesium oxide, but the substitutes generally impart lower toughness.

^eEstimated. NA Not available. — Zero.

¹See also Rare Earths; trade data for yttrium are included in the data shown for rare earths.

²Includes vttrium contained in rare-earth ores and mineral concentrates.

³Based on data from the U.S. Census Bureau and PIERS, JOC Group Inc.

⁴Essentially, all yttrium consumed domestically was imported or refined from imported materials.

⁵Free on board China. Source: Argus Media group-Metal Pages, London, United Kingdom.

⁶Defined as imports – exports. Insufficient data were available to determine exports and were excluded from the calculation.

⁷See <u>Appendix B</u> for definitions.

⁸See Appendix C for resource and reserve definitions and information concerning data sources.