The Danish Peace Academy

SCIENCE AND SOCIETY

John Avery
H.C. Ørsted Institute, University of Copenhagen

Chapter 9 EVOLUTION

Linnaeus, Lamarck and E. Darwin During the 17th and 18th centuries, naturalists had been gathering information on thousands of species of plants and animals. This huge, undigested heap of information was put into some order by the great Swedish naturalist, Carl von Linné (1707-1778), who is usually called by his Latin name, Carolus Linnaeus.

Linnaeus reclassified all living things, and he introduced a binomial nomenclature, so that each plant or animal became known by two names - the name of its genus, and the name of its species. In the classification of Linnaeus, the species within a given genus resemble each other very closely. Linnaeus also grouped related genera into classes, and related classes into orders. Later, the French anatomist, Cuvier (1769-1832), grouped related orders into phyla. In France, the Chevalier J.B. de Lamarck (1744-1829), was struck by the close relationships between various animal species; and in 1809 he published a book entitled Philosophie Zoologique, in which he tried to explain this interrelatedness in terms of a theory of evolution. Lamarck explained the close similarity of the species within a genus by supposing these species to have evolved from a common ancestor. However, the mechanism of evolution which he postulated was seriously wrong, since he believed that acquired characteristics could be inherited.

Lamarck believed, for example, that giraffes stretched their necks slightly by reaching upward to eat the leaves of high trees. He believed that these slightly-stretched necks could be inherited; and in this way, Lamarck thought, the necks of giraffes have gradually become longer over many generations. Although his belief in the inheritability of acquired characteristics was a serious mistake, Lamarck deserves much credit for correctly maintaining that the close similarity between the species of a genus is due to their descent from a common ancestral species.

Meanwhile, in England, the brilliant physician-poet, Erasmus Darwin (1731-1802), who was considered by Coleridge to have “...a greater range of knowledge than any other man in Europe”, had published The Botanic Garden and Zoonomia (1794). Darwin’s first book, The Botanic Garden, was written in verse, and in the preface he stated that his purpose was “...to inlist imagination under the banner of science..” and to call the reader’s attention to “the immortal works of the celebrated Swedish naturalist, Linnaeus”. This book was immensely popular during Darwin’s lifetime, but modern readers might find themselves wishing that he had used prose instead of poetry.

Darwin’s second book, Zoonomia, is more interesting, since it contains a clear statement of the theory of evolution:

“...When we think over the great changes introduced into various animals”, Darwin wrote, “as in horses, which we have exercised for different purposes of strength and swiftness, carrying burthens or in running races; or in dogs, which have been cultivated for strength and courage, as the bull-dog; or for acuteness of his sense of smell, as in the hound and spaniel; or for the swiftness of his feet, as the greyhound; or for his swimming in the water, or for drawing snow-sledges, as the rough-haired dogs of the north... and add to these the great change of shape and colour which we daily see produced in smaller animals from our domestication of them, as rabbits or pigeons;... when we revolve in our minds the great similarity of structure which obtains in all the warm-blooded animals, as well as quadrupeds, birds and anphibious animals, as in mankind, from the mouse and the bat to the elephant and whale; we are led to conclude that they have alike been produced from a similar living filament.”

Erasmus Darwin’s son, Robert, married Suzannah Wedgwood, the pretty and talented daughter of the famous potter, Josiah Wedgwood; and in 1809, (the same year in which Lamarck published his Philosophie Zoologique), she became the mother of Charles Darwin.

Charles Darwin

As a boy, Charles Darwin was fond of collecting and hunting, but he showed no special ability in school. His father, disappointed by his mediocre performance, once said to him: “You care for nothing but shooting, dogs and rat-catching; and you will be a disgrace to yourself, and to all your family.”

Robert Darwin was determined that his son should not turn into an idle, sporting man, as he seemed to be doing, and when Charles was sixteen, he was sent to the University of Edinburgh to study medicine. However, Charles Darwin had such a sensitive and gentle disposition that he could not stand to see operations (performed, in those days, without chloroform). Besides, he had found out that his father planned to leave him enough money to live on comfortably; and consequently he didn’t take his medical studies very seriously. However, some of his friends were scientists,and through them, Darwin became interested in geology and zoology.

Robert Darwin realized that his son did not want to become a physician, and, as an alternative, he sent Charles to Cambridge to prepare for the clergy. At Cambridge, Charles Darwin was very popular because of his cheerful, kind and honest character; but he was not a very serious student. Among his many friends, however, there were a few scientists, and they had a strong influence on him. The most important of Darwin’s scientific friends were John Stevens Henslow, the Professor of Botany at Cambridge, and Adam Sedgwick, the Professor of Geology. Remembering the things which influenced him at that time, Darwin wrote:

“During my last year at Cambridge, I read with care and profound interest Humboldt’s Personal Narritive of Travels to the Equinoctal Regions of America. This work, and Sir J. Hirschel’s Introduction to the Study of Natural Philosophy, stirred up in me a burning desire to add even the most humble contribution to the noble structure of Natural Science. No one of a dozen books influenced me nearly so much as these. I copied out from Humboldt long passages about Teneriffe, and read them aloud to Henslow, Ramsay and Dawes... and some of the party declared that they would endeavour to go there; but I think they were only half in earnest. I was, however, quite in earnest, and got an introduction to a merchant in London to enquire about ships.”

During the summer of 1831, Charles Darwin went to Wales to help Professor Sedgwick, who was studying the extremely ancient rock formations found there. When he returned to his father’s house after this geological expedition, he found a letter from Henslow. This letter offered Darwin the post of unpaid naturalist on the Beagle, a small brig which was being sent by the British government to survey the coast of South America and to carry a chain of chronological measurements around the world.

Darwin was delighted and thrilled by this offer. He had a burning desire both to visit the glorious, almost-unknown regions described by his hero, Alexander von Humboldt, and to “add even the most humble contribution to the noble structure of Natural Science”. His hopes and plans were blocked, however, by the opposition of his father, who felt that Charles was once again changing his vocation and drifting towards a life of sport and idleness. “If you can find any man of common sense who advises you to go”, Robert Darwin told his son, “I will give my consent”.

Deeply depressed by his father’s words, Charles Darwin went to visit the estate of his uncle, Josiah Wedgwood, at Maer, where he always felt more comfortable than he did at home. In Darwin’s words what happened next was the following:

“...My uncle sent for me, offering to drive me over to Shrewsbury and talk with my father, as my uncle thought that it would be wise in me to accept the offer. My father always maintained that my uncle was one of the most sensible men in the world, and he at once consented in the kindest possible manner. I had been rather extravagant while at Cambridge, and to console my father, I said that ‘I should be deuced clever to spend more than my allowance whilst on board the Beagle’, but he answered with a smile, ‘But they tell me you are very clever!’.”

Thus, on December 27, 1831, Charles Darwin started on a five-year voyage around the world. Not only was this voyage destined to change Darwin’s life, but also, more importantly, it was destined to change man’s view of his place in nature.

Lyell’s hypothesis

As the Beagle sailed out of Devonport in gloomy winter weather, Darwin lay in his hammock, 22 years old, miserably seasick and homesick, knowing that he would not see his family and friends for many years. To take his mind away from his troubles, Darwin read a new book, which Henslow had recommended: Sir Charles Lyell’s Principles of Geology. “Read it by all means”, Henslow had written, “for it is very interesting; but do not pay any attention to it except in regard to facts, for it is altogether wild as far as theory goes.”

Reading Lyell’s book with increasing excitement and absorption, Darwin could easily see what Henslow found objectionable: Lyell, a follower of the great Scottish geologist, James Hutton (1726-1797), introduced a revolutionary hypothesis into geology. According to Lyell, “No causes whatever have, from the earliest times to which we can look back, to the present, ever acted, but those now acting; and they have never acted with different degrees of energy from those which they now exert”.

This idea seemed dangerous and heretical to deeply religious men like Henslow and Sedgwick. They believed that the earth’s geology had been shaped by Noah’s flood, and perhaps by other floods and catastrophes which had occurred before the time of Noah. The great geological features of the earth, its mountains, valleys and planes, they viewed as marks left behind by the various catastrophes through which the earth had passed.

All this was now denied by Lyell. He believed the earth to be enormously old - thousands of millions of years old. Over this vast period of time, Lyell believed, the long-continued action of slow forces had produced the geological features of the earth. Great valleys had been carved out by glaciers and by the slow action of rain and frost; and gradual changes in the level of the land, continued over enormous periods of time, had built up towering mountain ranges.

Lyell’s belief in the immense age of the earth, based on geologi- cal evidence, made the evolutionary theories of Darwin’s grandfather suddenly seem more plausible. Given such vast quantities of time, the long-continued action of small forces might produce great changes in biology as well as in geology!

By the time the Beagle had reached San Thiago in the Cape Verde Islands, Darwin had thoroughly digested Lyell’s book, with its dizzying prospects. Looking at the geology of San Thiago, he realized “the wonderful superiority of Lyell’s manner of treating geology”. Features of the island which would have been incomprehensible on the basis of the usual Catastrophist theories were clearly understandable on the basis of Lyell’s hypothesis.

As the Beagle slowly made its way southward along the South American coast, Darwin went on several expeditions to explore the interior. On one of these trips, he discovered some fossil bones in the red mud of a river bed. He carefully excavated the area around them, and found the remains of nine huge extinct quadrupeds. Some of them were as large as elephants, and yet in structure they seemed closely related to living South American species. For example, one of the extinct animals which Darwin discovered resembled an armadillo except for its gigantic size.

The Beagle rounded Cape Horn, lashed by freezing waves so huge that it almost floundered. After the storm, when the brig was anchored safely in the channel of Tierra del Fuego, Darwin noticed how a Fuegan woman stood for hours and watched the ship, while sleet fell and melted on her naked breast, and on the new-born baby she was nursing. He was struck by the remarkable degree to which the Fuegans had adapted to their frigid environment, so that they were able to survive with almost no shelter, and with no clothes except a few stiff animal skins, which hardly covered them, in weather which would have killed ordinary people.

In 1835, as the Beagle made its way slowly northward, Darwin had many chances to explore the Chilean coast - a spectacularly beautiful country, shadowed by towering ranges of the Andes. One day, near Concepcion Bay, he experienced the shocks of a severe earthquake. “It came on suddenly, and lasted two minutes”, Darwin wrote, “The town of Concepcion is now nothing more than piles and lines of bricks, tiles and timbers.”

Measurements which Darwin made showed him that the shoreline near Concepcion had risen at least three feet during the quake; and thirty miles away, Fitzroy, the captain of the Beagle, discovered banks of mussels ten feet above the new high-water mark. This was dramatic confirmation of Lyell’s theories! After having seen how much the level of the land was changed by a single earthquake, it was easy for Darwin to imagine that similar events, in the course of many millions of years, could have raised the huge wall of the Andes mountains.

In September, 1835, the Beagle sailed westward to the Galapagos Islands, a group of small rocky volcanic islands off the coast of Peru. On these islands, Darwin found new species of plants and animals which did not exist anywhere else in the world. In fact, he discovered that each of the islands had its own species, similar to the species found on the other islands, but different enough to be classified separately. The Galapagos Islands contained thirteen species of finches, found nowhere else in the world, all basically alike in appearance, but differing in certain features especially related to their habits and diet. As he turned these facts over in his mind, it seemed to Darwin that the only explanation was that the thirteen species of Galapagos finches were descended from a single species, a few members of which had been carried to the islands by strong winds blowing from the South American mainland.

“Seeing this gradation and diversity of structure in one small, intimately related group of birds”, Darwin wrote, “one might really fancy that from an original paucity of birds in this archipelago, one species had been taken and modified for different ends... Facts such as these might well undermine the stability of species.”

As Darwin closely examined the plants and animals of the Galapagos Islands, he could see that although they were not quite the same as the corresponding South American species, they were so strongly similar that it seemed most likely that all the Galapagos plants and animals had reached the islands from the South American mainland, and had since been modified to their present form.

The idea of the gradual modification of species could also explain the fact, observed by Darwin, that the fossil animals of South America were more closely related to African and Eurasian animals than were the living South American species. In other words, the fossil animals of South America formed a link between the living South American species and the corresponding animals of Europe, Asia and Africa. The most likely explanation for this was that the animals had crossed to America on a land bridge which had since been lost, and that they had afterwards been modified.

The Beagle continued its voyage westward, and Darwin had a chance to study the plants and animals of the Pacific Islands. He noticed that there were no mammals on these islands, except bats and a few mammals brought by sailors. It seemed likely to Darwin that all the species of the Pacific Islands had reached them by crossing large stretches of water after the volcanic islands had risen from the ocean floor; and this accounted for the fact that so many classes were missing. The fact that each group of islands had its own particular species, found nowhere else in the world, seemed to Darwin to be strong evidence that the species had been modified after their arrival. The strange marsupials of the isolated Australian continent also made a deep impression on Darwin.

The Origin of Species

Darwin had left England on the Beagle in 1831, an immature young man of 22, with no real idea of what he wanted to do with his life. He returned from the five-year voyage in 1836, a mature man, confirmed in his dedication to science, and with formidable powers of observation, deduction and generalization. Writing of the voyage, Darwin says: “I have always felt that I owe to the voyage the first real education of my mind... Everything about which I thought or read was made to bear directly on what I had seen, or was likely to see, and this habit was continued during the five years of the voyage. I feel sure that it was this training which has enabled me to do whatever I have done in science.”

Darwin returned to England convinced by what he had seen on the voyage that plant and animal species had not been independently and miraculously created, but that they had been gradually modified to their present form over millions of years of geological time. Darwin was delighted to be home and to see his family and friends once again. To his uncle, Josiah Wedgwood, he wrote:

“My head is quite confused from so much delight, but I cannot allow my sister to tell you first how happy I am to see all my dear friends again... I am most anxious once again to see Maer and all its inhabitants.”

In a letter to Henslow, he said:

“My dear Henslow, I do long to see you. You have been the kindest friend to me that ever man possessed. I can write no more, for I am giddy with joy and confusion.”

In 1837, Darwin took lodgings at Great Marlborough Street in London, where he could work on his geological and fossil collections. He was helped in his work by Sir Charles Lyell, who became Darwin’s close friend. In 1837 Darwin also began a notebook on Transmutation of Species. His Journal of researches into the geology and natural history of the various countries visited by the H.M.S. Beagle was published in 1839, and it quickly became a best-seller. It is one of the most interesting travel books ever written, and since its publication it has been reissued more than a hundred times.

These were very productive years for Darwin, but he was homesick, both for his father’s home at the Mount and for his uncle’s nearby estate at Maer, with its galaxy of attractive daughters. Remembering his many happy visits to Maer, he wrote:

“In the summer, the whole family used often to sit on the steps of the old portico, with the flower-garden in front, and with the steep, wooded bank opposite the house reflected in the lake, with here and there a fish rising, or a water-bird paddling about. Nothing has left a more vivid picture in my mind than these evenings at Maer.” In the summer of 1838, tired of his bachelor life in London, Darwin wrote in his diary:

“My God, it is intolerable to think of spending one’s whole life like a neuter bee, working, working, and nothing after all! Imagine living all one’s days in smoky, dirty London! Only picture to yourself a nice soft wife on a sofa with a good fire, and books and music perhaps.. Marry! Marry! Marry! Q.E.D.”

Having made this decision, Darwin went straight to Maer and proposed to his pretty cousin, Emma Wedgwood, who accepted him at once, to the joy of both families. Charles and Emma Darwin bought a large and pleasant country house at Down, fifteen miles south of Lon- don; and there, in December, 1839, the first of their ten children was born.

Darwin chose this somewhat isolated place for his home because he was beginning to show signs of a chronic illness, from which he suffered for the rest of his life. His strength was very limited, and he saved it for his work by avoiding social obligations. His illness was never accurately diagnosed during his own lifetime, but the best guess of modern doctors is that he had Chagas’ disease, a trypanasome infection transmitted by the bite of a South American blood-sucking bug.

Darwin was already convinced that species had changed over long periods of time, but what were the forces which caused this change? In 1838 he found the answer:

“I happened to read for amusement Malthus on Population”, he wrote, “and being well prepared to appreciate the struggle for existence which everywhere goes on from long-continued observation of the habits of animals and plants, it at once struck me that under these circumstances favorable variations would tend to be preserved, and unfavorable ones destroyed. The result would be the formation of new species”

“Here, then, I had at last got a theory by which to work; but I was so anxious to avoid prejudice that I determined not for some time to write down even the briefest sketch of it. In June, 1842, I first allowed myself the satisfaction of writing a very brief abstract of my theory in pencil in 33 pages; and this was enlarged during the summer of 1844 into one of 230 pages”.

All of Darwin’s revolutionary ideas were contained in the 1844 abstract, but he did not publish it! Instead, in an incredible Copernicuslike procrastination, he began a massive treatise on barnacles, which took him eight years to finish! Probably Darwin had a premonition of the furious storm of hatred and bigotry which would be caused by the publication of his heretical ideas.

Finally, in 1854, he wrote to his friend, Sir Joseph Hooker (the director of Kew Botanical Gardens), to say that he was at last resuming his work on the origin of species. Both Hooker and Lyell knew of Darwin’s work on evolution, and for many years they had been urging him to publish it. By 1835, he had written eleven chapters of a book on the origin of species through natural selection; but he had begun writing on such a vast scale that the book might have run to four or five heavy volumes, which could have taken Darwin the rest of his life to complete.

Fortunately, this was prevented by the arrival at Down House of a bombshell in the form of a letter from a young naturalist named Alfred Russell Wallace. Like Darwin, Wallace had read Malthus’ book On Population, and in a flash of insight during a period of fever in Malaya, he had arrived at a theory of evolution through natural selection which was precisely the same as the theory on which Darwin had been working for twenty years! Wallace enclosed with his letter a short paper entitled On the Tendency of Varieties to Depart Indefinitely From the Original Type. It was a perfect summary of Darwin’s theory of evolution! “I never saw a more striking coincidence”, the stunned Darwin wrote to Lyell, “If Wallace had my MS. sketch, written in 1842, he could not have made a better short abstract! Even his terms now stand as heads of my chapters... I should be extremely glad now to publish a sketch of my general views in about a dozen pages or so; but I cannot persuade myself that I can do so honourably... I would far rather burn my whole book than that he or any other man should think that I have behaved in a paltry spirit.”

Both Lyell and Hooker acted quickly and firmly to prevent Darwin from suppressing his own work, as he was inclined to do. In the end, they found a happy solution: Wallace’s paper was read to the Linnean Society together with a short abstract of Darwin’s work, and the two papers were published together in the proceedings of the society. The members of the Society listened in stunned silence. As Hooker wrote to Darwin the next day, the subject was “too novel and too ominous for the old school to enter the lists before armouring.”

Lyell and Hooker then persuaded Darwin to write a book of moderate size on evolution through natural selection. As a result, in 1859, he published The Origin of Species, which ranks, together with Newton’s Principia as one of the two greatest scientific books of all time. What Newton did for physics, Darwin did for biology: He discovered the basic theoretical principle which brings together all the experimentallyobserved facts and makes them comprehensible; and he showed in detail how this basic principle can account for the facts in a very large number of applications.

Darwin’s Origin of Species can still be read with enjoyment and fascination by a modern reader. His style is vivid and easy to read, and almost all of his conclusions are still believed to be true. He begins by discussing the variation of plants and animals under domestication, and he points out that the key to the changes produced by breeders is selection: If we want to breed fast horses, we select the fastest in each generation, and use them as parents for the next generation.

Darwin then points out that a closely similar process occurs in nature: Every plant or animal species produces so many offspring that if all of them survived and reproduced, the population would soon reach astronomical numbers. This cannot happen, since the space and food supply are limited; and therefore, in nature there is always a struggle for survival. Accidental variations which increase an organism’s chance of survival are more likely to be propagated to subsequent generations than are harmful variations. By this mechanism, which Darwin called “natural selection”, changes in plants and animals occur in nature just as they do under domestication.

If we imagine a volcanic island, pushed up from the ocean floor and completely uninhabited, we can ask what will happen as plants and animals begin to arrive. Suppose, for example, that a single species of bird arrives on the island. The population will first increase until the environment cannot support larger numbers, and it will then remain constant at this level. Over a long period of time, however, variations may accidentally occur in the bird population which allow the variant individuals to make use of new types of food; and thus, through variation, the population may be further increased. In this way, a single species “radiates” into a number of sub-species which fill every available ecological niche. The new species produced in this way will be similar to the original ancestor species, although they may be greatly modified in features which are related to their new diet and habits. Thus, for example, whales, otters and seals retain the general structure of landgoing mammals, although they are greatly modified in features which are related to their aquatic way of life. This is the reason, according to Darwin, why vestigial organs are so useful in the classification of plant and animal species.

The classification of species is seen by Darwin as a geneological classification. All living organisms are seen, in his theory, as branches of a single family tree! This is a truly remarkable assertion, since the common ancestors of all living things must have been extremely simple and primitive; and it follows that the marvellous structures of the higher animals and plants, whose complexity and elegance utterly surpasses the products of human intelligence, were all produced, over thousands of millions of years, by random variation and natural selection!

Each structure and attribute of a living creature can therefore be seen as having a long history; and a knowledge of the evolutionary history of the organs and attributes of living creatures can contribute much to our understanding of them. For instance, studies of the evolutionary history of the brain and of instincts can contribute greatly to our understanding of psychology, as Darwin pointed out. Among the many striking observations presented by Darwin to support his theory, are facts related to morphology and embryology. For example, Darwin includes the following quotation from the naturalist, von Baer:

“In my possession are two little embryos in spirit, whose names I have omitted to attach, and at present I am quite unable to say to what class they belong. They may be lizards or small birds, or very young mammalia, so complete is the similarity in the mode of formation of the head and trunk in these animals. The extremities, however, are still absent in these embryos. But even if they had existed in the earliest stage of their development, we should learn nothing, for the feet of lizards and mammals, the wings and feet of birds, no less than the hands and feet of man, all arise from the same fundamental form.” Darwin also quotes the following passage from G.H. Lewis: “The tadpole of the common Salamander has gills, and passes its existence in the water; but the Salamandra atra, which lives high up in the mountains, brings forth its young full-formed. This animal never lives in the water. Yet if we open a gravid female, we find tadpoles inside her with exquisitely feathered gills; and when placed in water, they swim about like the tadpoles of the common Salamander or waternewt.

Obviously this aquatic organization has no reference to the future life of the animal, nor has it any adaption to its embryonic condition; it has solely reference to ancestral adaptations; it repeats a phase in the development of its progenitors.”

Darwin points out that, “...As the embryo often shows us more or less plainly the structure of the less modified and ancient progenitor of the group, we can see why ancient and extinct forms so often resemble in their adult state the embryos of existing species.” No abstract of Darwin’s book can do justice to it. One must read it in the original. He brings forward an overwhelming body of evidence to support his theory of evolution through natural selection; and he closes with the following words:

“It is interesting to contemplate a tangled bank, clothed with many plants of many different kinds, with birds singing on the bushes, with various insects flitting about, and with worms crawling through the damp earth, and to reflect that these elaborately constructed forms, so different from each other, and dependant upon each other in so complex a manner, have all been produced by laws acting around us... There is grandeur in this view of life, with its several powers, having been originally breathed by the Creator into a few forms or into one; and that whilst this planet has gone cycling on according to the fixed law of gravity, from so simple a beginning, endless forms most beautiful and wonderful have been and are being evolved.”

Chapter 10: VICTORY OVER DISEASE.

Suggestions for further reading

1. Sir Julian Huxley and H.B.D. Kettlewell, Charles Darwin and his World, Thames and Hudson, London (1965).
2. Allan Moorehead, Darwin and the Beagle, Penguin Books Ltd. (1971).
3. Francis Darwin (editor), The Autobiography of Charles Darwin and Selected Letters, Dover, New York (1958).
4. Charles Darwin, The Voyage of the Beagle, J.M. Dent and Sons Ltd., London (1975).
5. Charles Darwin, The Origin of Species, Collier MacMillan, London (1974).
6. Charles Darwin, The Expression of Emotions in Man and Animals, The University of Chicago Press (1965).
7. D.W. Forest, Francis Galton, The Life and Work of a Victorian Genius, Paul Elek, London (1974).
8. Ruth Moore, Evolution, Time-Life Books (1962).

Top


Go to The Danish Peace Academy
Back to Index

fredsakademiet.dk.