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Introduction!

The place of humans in nature

In this book, I have tried to sketch human history, from earliest times un-
til the present, against a cosmic backdrop. According to modern cosmol-
ogy, the universe is almost unimaginably vast. It is estimated that there
are 1,000,000,000,000,000,000,000 stars in the observable universe. Of these,
many stars have planets on which life is likely to have developed. Thus our
earth and its life forms are by no means unique.

We cannot claim to be “the center of the universe” with any unique justifi-
cation. However, the earth is our home. It is important to us. As parents, we
wish for and work for the survival of our children and grandchildren, and for
all future generations of humans. We must also recognize our responsibility
as custodians of the natural world. We have a duty to protect both human
civilization and the biosphere. We must work with dedication to guard and
protect the future of our precious and beautiful earthly home.

Cultural evolution

When humans first appeared on earth, they were not very numerous, and
not conspicuously different from other animals. Then suddenly, in a brief
space of geological time, they exploded in numbers, populating all parts of
the world, and even setting foot on the moon. This explosive growth was
driven by what might be called an “information explosion”.

All animals and plants pass on information from one generation to the
next in the form of DNA, the information-bearing genetic material. Occa-
sionally, mutations occur, and favorable mutations are preserved while the
bearers unfavorable mutations die out. Evolution by this genetic mecha-
nism proceeds very slowly. Humans too, evolve by this slow genetic method,
but in addition, they have another method of passing information between
generations: cultural evolution.

Cultural evolution depends on the non-genetic storage, transmission, dif-
fusion and utilization of information. The development of human speech, the
invention of writing, the development of paper and printing, and finally in

IThis book draws heavily on chapters that I have previously published in various books,
but a considerable amount of new material has been added



modern times, mass media, computers and the Internet - all these have been
crucial steps in society’s explosive accumulation of information and knowl-
edge. Human cultural evolution proceeds at a constantly-accelerating speed,
so great in fact that it threatens to shake society to pieces.

Anachronistic human emotions

Today, human greed and folly are destroying the global environment. As if
this were not enough, there is a great threat to civilization and the biosphere
from an all-destroying thermonuclear war. Both of these severe existential
threats are due to faults our inherited emotional nature.

Our emotions have an extremely long evolutionary history. Both lust
and rage are emotions that we share with many animals. However, with
the rapid advance of human cultural evolution, our ancestors began to live
together in progressively larger groups, and in these new societies, our in-
herited emotional nature was often inappropriate. What once was a survival
trait became a sin which needed to be suppressed by morality and law.

Today we live in a world that is entirely different from the one into which
our species was born. We face the problems of the 21st century: exploding
populations, vanishing resources, and the twin threats of catastrophic climate
change and thermonuclear war. We face these severe problems with our poor
cave-man’s brain, with an emotional nature that has not changed much since
our ancestors lived in small tribes, competing for territory on the grasslands
of Africa.

Ethics can overwrite tribalism!

After the invention of agriculture, roughly 10,000 years ago, humans began
to live in progressively larger groups, which were sometimes multi-ethnic. In
order to make towns, cities and finally nations function without excessive
injustice and violence, both ethical and legal systems were needed. Today,
in an era of global economic interdependence, instantaneous worldwide com-
munication and all-destroying thermonuclear weapons, we urgently need new
global ethical principles and a just and enforcible system of international
laws.

The very long childhood of humans allows learned behavior to overwrite
instinctive behavior. A newborn antelope is able to stand on its feet and
follow the herd almost immediately after birth. By contrast, a newborn



human is totally helpless. With cultural evolution, the period of dependence
has become progressively longer. Today, advanced education often requires
humans to remain dependent on parental or state support until they are in
their middle 20’s!

Humans are capable of tribalistic inter-group atrocities such as genocides
and wars, but they also have a genius for cooperation. Cultural evolution
implies inter-group exchange of ideas and techniques. It is a cooperative
enterprise in which all humans participate. It is cultural evolution that has
given our special dominance. But cultural evolution depends on overwriting
destructive tribalism with the principles of law, ethics and politeness. The
success of human cultural evolution demonstrates that this is possible. Ethics
can overwrite tribalism!

Ethics for the future

In the long run, because of the enormously destructive weapons, which have
been produced through the misuse of science, the survival of civilization can
only be ensured if we are able to abolish the institution of war. We must
also stop destroying our planet through unlimited growth of industry and
population.

Besides a humane, democratic and just framework of international law
and governance, we urgently need a new global ethic, an ethic where loyalty
to family, community and nation will be supplemented by a strong sense
of the brotherhood of all humans, regardless of race, religion or nationality.
Schiller expressed this feeling in his “Ode to Joy”, the text of Beethoven’s
Ninth Symphony. Hearing Beethoven’s music and Schiller’s words, most of us
experience an emotion of resonance and unity with its message: All humans
are brothers and sisters - not just some - all! It is almost a national anthem
of humanity. The feelings which the music and words provoke are similar to
patriotism, but broader. It is this sense of a universal human family, which
we need to cultivate in education, in the mass media, and in religion.

Educational reforms are urgently needed, particularly in the teaching of
history. As it is taught today, history is a chronicle of power struggles and
war, told from a biased national standpoint. Our own race or religion is
superior; our own country is always heroic and in the right.

We urgently need to replace this indoctrination in chauvinism by a re-
formed view of history, where the slow development of human culture is
described, giving adequate credit to all those who have contributed. Our



modern civilization is built on the achievements of ancient cultures. China,
India, Mesopotamia, ancient Egypt, Greece, the Islamic world, Christian Eu-
rope, and Jewish intellectual traditions all have contributed. Potatoes, corn
and squash are gifts from the American Indians. Human culture, gradually
built up over thousands of years by the patient work of millions of hands and
minds, should be presented to students of history as a precious heritage: far
too precious to be risked in a thermonuclear war.

On our small but beautiful earth, made small by technology, made beau-
tiful by nature, there is room for one group only: the family of humankind.
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Chapter 1

COSMOLOGY

1.1 Eratosthenes

Eratosthenes (276 B.C. - 196 B.C.), the director of the library at Alexandria, was probably
the most cultured man of the Hellenistic Era. His interests and abilities were universal.
He was an excellent historian, in fact the first historian who ever attempted to set up an
accurate chronology of events. He was also a literary critic, and he wrote a treatise on
Greek comedy. He made many contributions to mathematics, including a study of prime
numbers and a method for generating primes called the “sieve of Eratosthenes”.

As a geographer, Eratosthenes made a map of the world which, at that time, was the
most accurate that had ever been made. The positions of various places on Eratosthenes’
map were calculated from astronomical observations. The latitude was calculated by mea-
suring the angle of the polar star above the horizon, while the longitude probably was
calculated from the apparent local time of lunar eclipses.

As an astronomer, Eratosthenes made an extremely accurate measurement of the angle
between the axis of the earth and the plane of the sun’s apparent motion; and he also
prepared a map of the sky which included the positions of 675 stars.

Eratosthenes’ greatest achievement however, was an astonishingly precise measurement
of the radius of the earth. The value which he gave for the radius was within 50 miles
of what we now consider to be the correct value! To make this remarkable measurement,
Eratosthenes of course assumed that the earth is spherical, and he also assumed that the
sun is so far away from the earth that rays of light from the sun, falling on the earth,
are almost parallel. He knew that directly south of Alexandria there was a city called
Seyne, where at noon on a midsummer day, the sun stands straight overhead. Given these
facts, all he had to do to find the radius of the earth was to measure the distance between
Alexandria and Seyne. Then, at noon on a midsummer day, he measured the angle which
the sun makes with the vertical at Alexandria. From these two values, he calculated the
circumference of the earth to be a little over 25,000 miles. This was so much larger than the
size of the known world that Eratosthenes concluded (correctly) that most of the earth’s
surface must be covered with water; and he stated that “If it were not for the vast extent
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14 A HISTORY OF THE EARTH

of the Atlantic, one might sail from Spain to India along the same parallel.”

1.2 Aristarchus

The Hellenistic astronomers not only measured the size of the earth - they also measured the
sizes of the sun and the moon, and their distances from the earth. Among the astronomers
who worked on this problem was Aristarchus (c. 320 B.C. - ¢. 250 B.C.). Like Pythagoras,
he was born on the island of Samos, and he may have studied in Athens under Strato.
However, he was soon drawn to Alexandria, where the most exciting scientific work of the
time was being done.

Aristarchus calculated the size of the moon by noticing the shape of the shadow of the
earth thrown on the face of the moon during a solar eclipse. From the shape of the earth’s
shadow, he concluded that the diameter of the moon is about a third the diameter of the
earth. (This is approximately correct).

From the diameter of the moon and the angle between its opposite edges when it is
seen from the earth, Aristarchus could calculate the distance of the moon from the earth.
Next he compared the distance from the earth to the moon with the distance from the
earth to the sun. To do this, he waited for a moment when the moon was exactly half-
illuminated. Then the earth, moon and sun formed a right triangle, with the moon at the
corner corresponding to the right angle. Aristarchus, standing on the earth, could measure
the angle between the moon and the sun. He already knew the distance from the earth to
the moon, so now he knew two angles and one side of the right triangle. This was enough
to allow him to calculate the other sides, one of which was the sun-earth distance. His
value for this distance was not very accurate, because small errors in measuring the angles
were magnified in the calculation.

Aristarchus concluded that the sun is about twenty times as distant from the earth
as the moon, whereas in fact it is about four hundred times as distant. Still, even the
underestimated distance which Aristarchus found convinced him that the sun is enormous!
He calculated that the sun has about seven times the diameter of the earth, and three
hundred and fifty times the earth’s volume. Actually, the sun’s diameter is more than a
hundred times the diameter of the earth, and its volume exceeds the earth’s volume by a
factor of more than a million!

Even his underestimated value for the size of the sun was enough to convince Aristarchus
that the sun does not move around the earth. It seemed ridiculous to him to imagine the
enormous sun circulating in an orbit around the tiny earth. Therefore he proposed a model
of the solar system in which the earth and all the planets move in orbits around the sun,
which remains motionless at the center; and he proposed the idea that the earth spins
about its axis once every day.

Although it was the tremendous size of the sun which suggested this model to Aristarchus,
he soon realized that the heliocentric model had many calculational advantages: For ex-
ample, it made the occasional retrograde motion of certain planets much easier to explain.
Unfortunately, he did not work out detailed table for predicting the positions of the plan-
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ets. If he had done so, the advantages of the heliocentric model would have been so obvious
that it might have been universally adopted almost two thousand years before the time of
Copernicus, and the history of science might have been very different.

Aristarchus was completely right, but being right does not always lead to popularity.
His views were not accepted by the majority of astronomers, and he was accused of impiety
by the philosopher Cleanthes, who urged the authorities to make Aristarchus suffer for his
heresy. Fortunately, the age was tolerant and enlightened, and Aristarchus was never
brought to trial.

The model of the solar system on which the Hellenistic astronomers finally agreed was
not that of Aristarchus but an alternative (and inferior) model developed by Hipparchus
(c. 190 B.C. - ¢. 120 B.C.). Hipparchus made many great contributions to astronomy
and mathematics. For example, he was the first person to calculate and publish tables
of trigonometric functions. He also invented many instruments for accurate naked-eye
observations. He discovered the “precession of equinoxes”, introduced a classification of
stars according to their apparent brightness, and made a star-map which far outclassed
the earlier star-map of Eratosthenes. Finally, he introduced a model of the solar system
which allowed fairly accurate calculation of the future positions of the planets, the sun and
the moon.

In English, we use the phrase “wheels within wheels” to describe something excessively
complicated. This phrase is derived from the model of the solar system introduced by
Hipparchus! In his system, each planet has a large wheel which revolves with uniform
speed about the earth (or in some cases, about a point near to the earth). Into this large
wheel was set a smaller wheel, called the “epicycle”, which also revolved with uniform
speed. A point on the smaller wheel was then supposed to duplicate the motion of the
planet. In some cases, the model of Hipparchus needed still more “wheels within wheels”
to duplicate the planet’s motion.. The velocities and sizes of the wheels were chosen in
such a way as to “save the appearances”.

The model of Hipparchus was popularized by the famous Egyptian astronomer, Claudius
Ptolemy (c. 75 A.D. - ¢. 135 A.D.), in a book which dominated astronomy up to the time
of Copernicus. Ptolemy’s book was referred to by its admirers as Megale Mathematike
Syntazis (The Great Mathematical Composition). During the dark ages which followed
the fall of Rome, Ptolemy’s book was preserved and translated into Arabic by the civilized
Moslems, and its name was shortened to Almagest (The Greatest). It held the field until, in
the 15th century, the brilliant heliocentric model of Aristarchus was rescued from oblivion
by Copernicus.
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Figure 1.1: A map of the known world by Eratosthenes, surrounded by spheres
on which moved the sun, moon and stars.

Figure 1.2: A statue of Aristarchus. In the background we see his sun-centered
picture of planetary motion.
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1.3 Copernicus

The career of Leonardo da Vinci illustrates the first phase of the “information explosion”
which has produced the modern world: Inexpensive paper was being manufactured in Eu-
rope, and it formed the medium for Leonardo’s thousands of pages of notes. His notes and
sketches would never have been possible if he had been forced to use expensive parchment
as a medium. On the other hand, the full force of Leonardo’s genius and diligence was
never felt because his notes were not printed.

Copernicus, who was a younger contemporary of Leonardo, had a much greater effect
on the history of ideas, because his work was published. Thus, while paper alone made a
large contribution to the information explosion, it was printing combined with paper which
had an absolutely decisive and revolutionary impact: The modern scientific era began with
the introduction of printing.

Nicolas Copernicus (1473-1543) was orphaned at the age of ten, but fortunately for
science he was adopted by his uncle, Lucas Watzelrode, the Prince-Bishop of Ermland (a
small semi-independent state which is now part of Poland). Through his uncle’s influence,
Copernicus was made a Canon of the Cathedral of Frauenberg in Ermland at the age of
twenty-three. He had already spent four years at the University of Krakow, but his first
act as Canon was to apply for leave of absence to study in Italy.

At that time, Italy was very much the center of European intellectual activity. Coper-
nicus stayed there for ten years, drawing a comfortable salary from his cathedral, and
wandering from one Italian University to another. He studied medicine and church law at
Padua and Bologna, and was made a Doctor of Law at the University of Ferrara. Thus,
thanks to the influence of his uncle, Copernicus had an education which few men of his
time could match. He spent altogether fourteen years as a student at various universi-
ties, and he experienced the bracing intellectual atmosphere of Italy at the height of the
Renaissance.

In 1506, Bishop Lucas recalled Copernicus to Ermland, where the young Canon spent
the next six years as his uncle’s personal physician and administrative assistant. After his
uncle’s death, Copernicus finally took up his duties as Canon at the cathedral-fortress of
Frauenberg on the Baltic coast of Ermland; and he remained there for the rest of his life,
administering the estates of the cathedral, acting as a physician to the people of Ermland,
and working in secret on his sun-centered cosmology.

Even as a student in Krakow, Copernicus had thought about the problem of removing
the defects in the Ptolomeic system. In Italy, where the books of the ancient philosophers
had just become available in the original Greek, Copernicus was able to search among
their writings for alternative proposals. In Ptolemy’s system, not all the “wheels within
wheels” turn with a uniform velocity, although it is possible to find a point of observation
called the “punctum equans” from which the motion seems to be uniform. Concerning this,
Copernicus wrote:

“A system of this sort seems neither sufficiently absolute, nor sufficiently pleasing to the
mind... Having become aware of these defects, I often considered whether there could be
found a more reasonable arrangement of circles, in which everything would move uniformly
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Figure 1.3: Nicolas Copernicus (1473-1543).

about its proper center, as the rule of absolute motion requires..”

While trying to remove what he regarded as a defect in the Ptolemeic system by re-
arranging the wheels, Copernicus rediscovered the sun-centered cosmology of Aristarchus.
However, he took a crucial step which went beyond Aristarchus: What Copernicus did
during the thirty-one years which he spent in his isolated outpost on the Baltic was to
develop the heliocentric model into a complete system, from which he calculated tables of
planetary positions.

The accuracy of Copernicus’ tables was a great improvement on those calculated from
the Ptolemeic system, and the motions of the planets followed in a much more natural way.
The inner planets, Mercury and Venus, stayed close to the sun because of the smallness
of their orbits, while the occasional apparently retrograde motion of the outer planets
could be explained in a very natural way by the fact that the more rapidly-moving earth
sometimes overtook and passed one of the outer planets. Furthermore, the speed of the
planets diminished in a perfectly regular way according to their distances from the sun.

According the the Copernican cosmology, the earth moves around the sun in an orbit
whose radius is ninety-three million miles. As the earth moves in its enormous orbit, it is
sometimes closer to a particular star, and sometimes farther away. Therefore the observed
positions of the stars relative to each other ought to change as the earth moves around its
orbit. This effect, called “stellar parallax”, could not be observed with the instruments
which were available in the 16th century.

The explanation which Copernicus gave for the absence of stellar parallax was that
“Compared to the distance of the fixed stars, the earth’s distance from the sun is negligibly
small!” If this is true for the nearest stars, then what about the distance to the farthest
stars?

Vast and frightening chasms of infinity seemed to open under the feet of those who
understood the implications of the Copernican cosmology. Humans were no longer rulers
of a small, tidy universe especially created for themselves. They were suddenly “lost in the
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stars”, drifting on a tiny speck of earth through unimaginably vast depths of space. Hence
the cry of Blaise Pascal: “Le silence eternal de ce éspaces infinis m’effraie!”, “The eternal
silence of these infinite spaces terrifies me!”

1.4 Tycho Brahe

The next step in the Copernican revolution was taken by two men who presented a striking
contrast to one another. Tycho Brahe (1546-1601) was a wealthy and autocratic Danish
nobleman, while Johannes Kepler (1571-1630) was a neurotic and poverty-stricken teacher
in a provincial German school. Nevertheless, in spite of these differences, the two men
collaborated for a time, and Johannes Kepler completed the work of Tycho Brahe.

At the time when Tycho was born, Denmark included southern Sweden; and ships
sailing to and from the Baltic had to pay a toll as they passed through the narrow sound
between Helsinggr (Elsinore) in Denmark, and Helsingborg in what is now Sweden. On
each side of the sound was a castle, with guns to control the sea passage. Tycho Brahe’s
father, a Danish nobleman, was Governor of Helsingborg Castle. Helsingborg Castle

Tycho’s uncle was also a military man, a Vice-Admiral in the navy of the Danish king,
Frederick II. This uncle was childless, and Tycho’s father promised that the Vice-Admiral
could adopt one of his own children. By a fortunate coincidence, twins were born to the
Governor’s wife. However, when one of the twins died, Tycho’s father was unwilling to
part with the survivor (Tycho). The result was that, in the typically high-handed style of
the Brahe family, the Vice-Admiral kidnapped Tycho. The Governor at first threatened
murder, but soon calmed down and accepted the situation with good grace.

The adoption of Tycho Brahe by his uncle was as fortunate for science as the adoption
of Copernicus by Bishop Watzelrode, because the Vice-Admiral soon met his death in an
heroic manner which won the particular gratitude of the Danish Royal Family:

Admiral Brahe, returning from a battle against the Swedes, was crossing a bridge in
the company of King Frederick II. As the king rode across the bridge, his horse reared
suddenly, throwing him into the icy water below. The king would have drowned if Admiral
Brahe had not leaped into the water and saved him. However, the Admiral saved the king’s
life at the cost of his own. He caught pneumonia and died from it. The king’s gratitude to
Admiral Brahe was expressed in the form of special favor shown to his adopted son, Tycho,
who had in the meantime become an astronomer (against the wishes of his family).

As a boy of fourteen, Tycho Brahe had witnessed a partial eclipse of the sun, which had
been predicted in advance. It struck him as “something divine that men could know the
motions of the stars so accurately that they were able a long time beforehand to predict
their places and relative positions”. Nothing that his family could say would dissuade him
from studying astronomy, and he did so not only at the University of Copenhagen, but
also at Leipzig, Wittenberg, Rostock, Basel and Augsburg.

During this period of study, Tycho began collecting astronomical instruments. His
lifelong quest for precision in astronomical observation dated from his seventeenth year,
when he observed a conjunction of Saturn and Jupiter. He found that the best tables
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available were a month in error in predicting this event. Tycho had been greatly struck
by the fact that (at least as far as the celestial bodies were concerned), it was possible to
predict the future; but here the prediction was in error by a full month! He resolved to do
better.

Tycho first became famous among astronomers through his observations on a new star,
which suddenly appeared in the sky in 1572. He used the splendid instruments in his
collection to show that the new star was very distant from the earth - certainly beyond the
sphere of the moon - and that it definitely did not move with respect to the fixed stars.
This was, at the time, a very revolutionary conclusion. According to Aristotle, (who was
still regarded as the greatest authority on matters of natural philosophy), all generation
and decay should be confined to the region beneath the sphere of the moon. Tycho’s result
meant that Aristotle could be wrong!

Tycho thought of moving to Basel. He was attracted by the beauty of the town, and
he wanted to be nearer to the southern centers of culture. However, in 1576 he was
summoned to appear before Frederick II. Partly in recognition of Tycho’s growing fame
as an astronomer, and partly to repay the debt of gratitude which he owed to Admiral
Brahe, the king made Tycho the ruler of Hven, an island in the sound between Helsinghorg
and Helsinggr. Furthermore, Frederick granted Tycho generous funds from his treasury to
construct an observatory on Hven.

With these copious funds, Tycho Brahe constructed a fantastic castle-observatory which
he called Uranienborg. It was equipped not only with the most precise astronomical in-
struments the world had ever seen, but also with a chemical laboratory, a paper mill, a
printing press and a dungeon for imprisoning unruly tenants.

Tycho moved in with a retinue of scientific assistants and servants. The only thing
which he lacked was his pet elk. This beast had been transported from the Brahe estate
at Knudstrup to Landskrona Castle on the Sound, and it was due to be brought on a
boat to the island of Hven. However, during the night, the elk wandered up a stairway
in Landskrona Castle and found a large bowl of beer in an unoccupied room. Like its
master, the elk was excessively fond of beer, and it drank so much that, returning down
the stairway, it fell, broke its leg, and had to be shot.

Tycho ruled his island in a thoroughly autocratic and grandiose style, the effect of
which was heightened by his remarkable nose. In his younger days, Tycho had fought a
duel with another student over the question of who was the better mathematician. During
the duel, the bridge of Tycho’s nose had been sliced off. He had replaced the missing piece
by an artificial bridge which he had made of gold and silver alloy, and this was held in
place by means of a sticky ointment which he always carried with him in a snuff box.

Tycho entertained in the grandest possible manner the stream of scholars who came
to Hven to see the wonders of Uranienborg. Among his visitors were King James VI of
Scotland (who later ascended the English throne as James I), and the young prince who
later became Christian IV of Denmark.

With the help of his numerous assistants, Tycho observed and recorded the positions
of the sun, moon, planets and stars with an accuracy entirely unprecedented in the history
of astronomy. He corrected both for atmospheric refraction and for instrumental errors,
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Figure 1.4: Tycho Brahe. Public domain, Wikimedia Commons
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Figure 1.5: Johannes Kepler

with the result that his observations were accurate to within two minutes of arc. This
corresponds to the absolute limit of what can be achieved without the help of a telescope.

Not only were Tycho’s observations made with unprecedented accuracy - they were
also made continuously over a period of 35 years. Before Tycho’s time, astronomers had
haphazardly recorded an observation every now and then, but no one had thought of
making systematic daily records of the positions of each of the celestial bodies. Tycho was
able to make a “motion picture” record of the positions of the planets because he could
divide the work among his numerous assistants.

All went well with Tycho on the island of Hven for twelve years. Then, in 1588,
Frederick IT died (of alcoholism), and his son ascended the throne as Christian IV. Frederick
IT had been especially grateful to Admiral Brahe for saving his life, and he treated the
Admiral’s adopted son, Tycho, with great indulgence. However, Christian IV was unwilling
to overlook the increasingly scandalous and despotic way in which Tycho was ruling Hven;
and he reduced the subsidies which Tycho Brahe had been receiving from the royal treasury.
The result was that Tycho, feeling greatly insulted, dismantled his instruments and moved
them to Prague, together with his retinue of family, scientific assistants, servants and jester.

In Prague, Tycho became the Imperial Mathematician of the Holy Roman Emperor,
Rudolph II. (We should mention in passing that royal patrons such as Rudolph were more
interested in astrology than in astronomy: The chief duty of the Imperial Mathematician
was to cast horoscopes for the court!) After the move to Prague, one of Tycho’s senior
scientific assistants became dissatisfied and left. To replace him, Tycho recruited a young
German mathematician named Johannes Kepler.

1.5 Johannes Kepler

Two thousand years before the time of Kepler, Pythagoras had dreamed of finding math-
ematical harmony in the motions of the planets. Kepler and Newton were destined to
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fulfil his dream. Kepler was also a true follower of Pythagoras in another sense: Through
his devotion to philosophy, he transcended the personal sufferings of a tortured childhood
and adolescence. He came from a family of misfits whose neurotic quarrelsomeness was
such that Kepler’s father narrowly escaped being hanged, and his mother was accused of
witchcraft by her neighbors. She was imprisoned, and came close to being burned.

At the age of 4, Kepler almost died of smallpox, and his hands were badly crippled.
Concerning his adolescence, Kepler wrote: “I suffered continually from skin ailments, often
severe sores, often from the scabs of chronic putrid wounds in my feet, which healed badly
and kept breaking out again. On the middle finger of my right hand, I had a worm, and
on the left, a huge sore.”

Kepler’s mental strength compensated for his bodily weakness. His brilliance as a
student was quickly recognized, and he was given a scholarship to study theology at the
University of Tiibingen. He was agonizingly lonely and unpopular among his classmates.

Kepler distinguished himself as a student at Tiibingen, and shortly before his gradua-
tion, he was offered a post as a teacher of mathematics and astronomy at the Protestant
School in Graz. With the post went the title of “Mathematician of the Provence of Styria”.
(Gratz was the capital of Styria, a province of Austria).

Johannes Kepler was already an ardent follower of Copernicus; and during the summer
of his first year in Graz, he began to wonder why the speed of the planets decreased in a
regular way according to their distances from the sun, and why the planetary orbits had
the particular sizes which Copernicus assigned to them.

On July 9, 1595, in the middle of a lecture which he was giving to his class, Kepler
was electrified by an idea which changed the entire course of his life. In fact, the idea was
totally wrong, but it struck Kepler with such force that he thought he had solved the riddle
of the universe with a single stroke!

Kepler had drawn for his class an equilateral triangle with a circle circumscribed about
it, so that the circle passed through all three corners of the triangle. Inside, another circle
was inscribed, so that it touched each side of the triangle. It suddenly struck Kepler that
the ratio between the sizes of the two circles resembled the ratio between the orbits of
Jupiter and Saturn. His mercurial mind immediately leaped from the two-dimensional
figure which he had drawn to the five regular solids of Pythagoras and Plato.

In three dimensions, only five different completely symmetrical many-sided figures are
possible: the tetrahedron, cube, octahedron, icosahedron and the dodecahedron. There the
list stops. As Euclid proved, it is a peculiarity of three-dimensional space that there are
only five possible regular polyhedra. These five had been discovered by Pythagoras, and
they had been popularized by Plato, the most famous of the Pythagorean philosophers.
Because Plato made so much of the five regular solids in his dialogue Timaeus, they became
known as the “Platonic solids”.

In a flash of (completely false) intuition, Kepler saw why there had to be exactly six
planets: The six spheres of the planetary orbits were separated by the five Platonic solids!
This explained the sizes of the orbits too: Each sphere except the innermost and the
outermost was inscribed in one solid and circumscribed about another!

Kepler, who was then twenty-three years old, was carried away with enthusiasm. He
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immediately wrote a book about his discovery and called it Mysterium Cosmigraphicum,
“The Celestial Mystery”. The book begins with an introduction strongly supporting the
Copernican cosmology. After that comes the revelation of Kepler’s marvelous (and false)
solution to the cosmic mystery by means of the five Platonic solids. Kepler was unable to
make the orbit of Jupiter fit his model, but he explains naively that “nobody will wonder
at it, considering the great distance”. The figures for the other planets did not quite fit
either, but Kepler believed that the distances given by Copernicus were inaccurate.

Finally, after the mistaken ideas of the book, comes another idea, which comes close to
the true picture of gravitation. Kepler tries to solve the problem of why the outer planets
move more slowly than the inner ones, and he says:

“If we want to get closer to the truth and establish some correspondence in the propor-
tions, then we must choose between these two assumptions: Either the souls of the planets
are less active the farther they are from the sun, or there exists only one moving soul in
the center of the orbits, that is the sun, which drives the planets the more vigorously the
closer the planet is, but whose force is quasi-exhausted when acting on the outer planets,
because of the long distance and the weakening of the force which it entails.”

In Mysterium Cosmigraphicum, Kepler tried to find an exact mathematical relationship
between the speeds of the planets and the sizes of their orbits; but he did not succeed in
this first attempt. He finally solved this problem many years later, towards the end of his
life.

Kepler sent a copy of his book to Tycho Brahe with a letter in which he called Tycho
“the prince of mathematicians, not only of our time, but of all time”. Tycho was pleased
with this “fan letter”; and he recognized the originality of Kepler’s book, although he had
reservations about its main thesis.

Meanwhile, religious hatred had been deepening and Kepler, like all other Protestants,
was about to be expelled from Catholic Austria. He appealed to Tycho for help, and
Tycho, who was in need of a scientific assistant, wrote to Kepler from the castle of Benatek
near Prague:

“You have no doubt already been told that I have most graciously been called here
by his Imperial Majesty and that I have been received in a most friendly and benevolent
manner. [ wish that you would come here, not forced by the adversity of fate, but rather
of your own will and desire for common study. But whatever your reason, you will find in
me your friend, who will not deny you his advice and help in adversity”

To say that Kepler was glad for this opportunity to work with Tycho Brahe is to put
the matter very mildly. The figures of Copernicus did not really fit Kepler's model, and
his great hope was that Tycho’s more accurate observations would give a better fit. In his
less manic moments, Kepler also recognized that his model might not be correct after all,
but he hoped that Tycho’s data would allow him to find the true solution.

Kepler longed to get his hands on Tycho’s treasure of accurate data, and concerning
these he wrote:

“Tycho possesses the best observations, and thus so-to-speak the material for building
the new edifice. He also has collaborators, and everything else he could wish for. He only
lacks the architect who would put all this to use according to his own design. For although
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he has a happy disposition and real architectural skill, he is nevertheless obstructed in
his progress by the multitude of the phenomena, and by the fact that the truth is deeply
hidden in them. Now old age is creeping upon him, enfeebling his spirit and his forces”

In fact, Tycho had only a short time to live. Kepler arrived in Prague in 1600, and in
1601 he wrote:

“On October 13, Tycho Brahe, in the company of Master Minkowitz, had dinner at
the illustrious Rosenborg’s table, and held back his water beyond the demands of courtesy.
When he drank more, he felt the tension in his bladder increase, but he put politeness
before health. When he got home, he was scarcely able to urinate.. After five sleepless
nights, he could still only pass water with the greatest pain, and even so the passage was
impeded. The insomnia continued, with internal fever gradually leading to delirium; and
the food which he ate, from which he could not be kept, exacerbated the evil... On his last
night, he repeated over and over again, like someone composing a poem: ‘Let me not seem
to have lived in vain’.”

A few days after Tycho’s death, Kepler was appointed to succeed him as Imperial
Mathematician of the Holy Roman Empire. Kepler states that the problem of analyzing
Tycho’s data took such a hold on him that he nearly went out of his mind. With a
fanatic diligence rarely equaled in the history of science, he covered thousands of pages
with calculations. Finally, after many years of struggle and many false starts, he wrung
from Tycho’s data three precise laws of planetary motion:

1) The orbits of the planets are ellipses, with the sun at one focal point.

2) A line drawn from the sun to any one of the planets sweeps out equal areas in equal
intervals of time.

3) The square of the period of a planet is proportional to the cube of the mean radius
of its orbit.

Thanks to Kepler’s struggles, Tycho certainly had not lived in vain. Kepler’s three
laws were to become the basis for Newton’s great universal laws of motion and gravitation.
Kepler himself imagined a universal gravitational force holding the planets in their orbits
around the sun, and he wrote:

“If two stones were placed anywhere in space, near to each other, and outside the reach
of force of any other material body, then they would come together after the manner of
magnetic bodies, at an intermediate point, each approaching the other in proportion to
the other’s mass... ”

“If the earth ceased to attract the waters of the sea, the seas would rise up and flow to
the moon... If the attractive force of the moon reaches down to the earth, it follows that
the attractive force of the earth, all the more, extends to the moon, and even farther... ”

“Nothing made of earthly substance is absolutely light; but matter which is less dense,
either by nature or through heat, is relatively lighter... Out of the definition of lightness
follows its motion; for one should not believe that when lifted up it escapes to the periphery
of the world, or that it is not attracted to the earth. It is merely less attracted than heavier
matter, and is therefore displaced by heavier matter.”

Kepler also understood the correct explanation of the tides. He explained them as being
produced primarily by the gravitational attraction of the moon, while being influenced to
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a lesser extent by the gravitational field of the sun.

Unfortunately, when Kepler published these revolutionary ideas, he hid them in a tan-
gled jungle of verbiage and fantasy which repelled the most important of his readers, Galileo
Galilei. In fact, the English were the first to appreciate Kepler. King James I (whom Tycho
entertained on Hven) invited Kepler to move to England, but he declined the invitation.
Although the skies of Europe were darkened by the Thirty Years War, Kepler could not
bring himself to leave the German cultural background where he had been brought up and
where he felt at home.

1.6 Newton

On Christmas day in 1642 (the year in which Galileo died), a recently widowed woman
named Hannah Newton gave birth to a premature baby at the manor house of Woolsthorpe,
a small village in Lincolnshire, England. Her baby was so small that, as she said later,
“he could have been put into a quart mug”, and he was not expected to live. He did live,
however, and lived to achieve a great scientific synthesis, uniting the work of Copernicus,
Brahe, Kepler, Galileo and Descartes.

When Isaac Newton was four years old, his mother married again and went to live
with her new husband, leaving the boy to be cared for by his grandmother. This may
have caused Newton to become more solemn and introverted than he might otherwise have
been. One of his childhood friends remembered him as “a sober, silent, thinking lad, scarce
known to play with the other boys at their silly amusements”.

As a boy, Newton was fond of making mechanical models, but at first he showed no
special brilliance as a scholar. He showed even less interest in running the family farm,
however; and a relative (who was a fellow of Trinity College) recommended that he be sent
to grammar school to prepare for Cambridge University.

When Newton arrived at Cambridge, he found a substitute father in the famous math-
ematician Isaac Barrow, who was his tutor. Under Barrow’s guidance, and while still a
student, Newton showed his mathematical genius by inventing the binomial theorem.

In 1665, Cambridge University was closed because of an outbreak of the plague, and
Newton returned for two years to the family farm at Woolsthorpe. He was then twenty-
three years old. During the two years of isolation, Newton developed his binomial theorem
into the beginnings of differential calculus.

Newton’s famous experiments in optics also date from these years. The sensational
experiments of Galileo were very much discussed at the time, and Newton began to think
about ways to improve the telescope. Writing about his experiments in optics, Newton
says:

“In the year 1666 (at which time I applied myself to the grinding of optic glasses of other
figures than spherical), I procured me a triangular prism, to try therewith the celebrated
phenomena of colours. And in order thereto having darkened my chamber, and made a
small hole in the window shuts to let in a convenient quantity of the sun’s light, I placed
my prism at its entrance, that it might thereby be refracted to the opposite wall.”
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“It was at first a very pleasing divertisment to view the vivid and intense colours
produced thereby; but after a while, applying myself to consider them more circumspectly,
I became surprised to see them in an oblong form, which, according to the received laws
of refraction I expected should have been circular.”

Newton then describes his crucial experiment. In this experiment, the beam of sunlight
from the hole in the window shutters was refracted by two prisms in succession. The first
prism spread the light into a rainbow-like band of colors. From this spectrum, he selected
a beam of a single color, and allowed the beam to pass through a second prism; but when
light of a single color passed through the second prism, the color did not change, nor was
the image spread out into a band. No matter what Newton did to it, red light always
remained red, once it had been completely separated from the other colors; yellow light
remained yellow, green remained green, and blue remained blue.

Newton then measured the amounts by which the beams of various colors were bent by
the second prism; and he discovered that red light was bent the least. Next in sequence
came orange, yellow, green, blue and finally violet, which was deflected the most. Newton
recombined the separated colors, and he found that together, they once again produced
white light.

Concluding the description of his experiments, Newton wrote:

“...and so the true cause of the length of the image (formed by the first prism) was
detected to be no other than that light is not similar or homogenial, but consists of deform
rays, some of which are more refrangible than others.”

“As rays of light differ in their degrees of refrangibility, so they also differ in their
disposition to exhibit this or that particular colour... To the same degree of refrangibility
ever belongs the same colour, and to the same colour ever belongs the same degree of
refrangibility.”

“...The species of colour and the degree of refrangibility belonging to any particular
sort of rays is not mutable by refraction, nor by reflection from natural bodies, nor by any
other cause that I could yet observe. When any one sort of rays hath been well parted from
those of other kinds, it hath afterwards obstinately retained its colour, notwithstanding
my utmost endeavours to change it.”

During the plague years of 1665 and 1666, Newton also began the work which led to
his great laws of motion and universal gravitation. Referring to the year 1666, he wrote:

“I began to think of gravity extending to the orb of the moon; and having found out how
to estimate the force with which a globe revolving within a sphere presses the surface of the
sphere, from Kepler’s rule of the periodical times of the planets being in a sesquialternate
proportion of their distances from the centres of their orbs, I deduced that the forces which
keep the planets in their orbs must be reciprocally as the squares of the distances from the
centres about which they revolve; and thereby compared the force requisite to keep the
moon in her orb with the force of gravity at the surface of the earth, and found them to
answer pretty nearly.”

“All this was in the plague years of 1665 and 1666, for in those days I was in the prime
of my age for invention, and minded mathematics and philosophy more than at any time
since.”
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Galileo had studied the motion of projectiles, and Newton was able to build on this
work by thinking of the moon as a sort of projectile, dropping towards the earth, but at
the same time moving rapidly to the side. The combination of these two motions gives the
moon its nearly-circular path.

From Kepler’s third law, Newton had deduced that the force with which the sun attracts
a planet must fall off as the square of the distance between the planet and the sun. With
great boldness, he guessed that this force is universal, and that every object in the universe
attracts every other object with a gravitational force which is directly proportional to the
product of the two masses, and inversely proportional to the square of the distance between
them.

Newton also guessed correctly that in attracting an object outside its surface, the earth
acts as though its mass were concentrated at its center. However, he could not construct
the proof of this theorem, since it depended on integral calculus, which did not exist in
1666. (Newton himself invented integral calculus later in his life.)

In spite of the missing proof, Newton continued and “...compared the force requisite
to keep the moon in her orb with the force of gravity at the earth’s surface, and found
them to answer pretty nearly”. He was not satisfied with this incomplete triumph, and
he did not show his calculations to anyone. He not only kept his ideas on gravitation to
himself, (probably because of the missing proof), but he also refrained for many years from
publishing his work on the calculus. By the time Newton published, the calculus had been
invented independently by the great German mathematician and philosopher, Gottfried
Wilhelm Leibniz (1646-1716); and the result was a bitter quarrel over priority. However,
Newton did publish his experiments in optics, and these alone were enough to make him
famous.

In 1669, Newton’s teacher, Isaac Barrow, generously resigned his post as Lucasian
Professor of Mathematics so that Newton could have it. Thus, at the age of 27, Newton
became the head of the mathematics department at Cambridge. He was required to give
eight lectures a year, but the rest of his time was free for research.

Newton’s prism experiments had led him to believe that the only possible way to avoid
blurring of colors in the image formed by a telescope was to avoid refraction entirely.
Therefore he designed and constructed the first reflecting telescope. In 1672, he presented
a reflecting telescope to the newly-formed Royal Society, which then elected him to mem-
bership.

Meanwhile, the problems of gravitation and planetary motion were increasingly dis-
cussed by the members of the Royal Society. In January, 1684, three members of the
Society were gathered in a London coffee house. One of them was Robert Hooke (1635-
1703), author of Micrographia and Professor of Geometry at Gresham College, a brilliant
but irritable man. He had begun his career as Robert Boyle’s assistant, and had gone on
to do important work in many fields of science. Hooke claimed that he could calculate the
motion of the planets by assuming that they were attracted to the sun by a force which
diminished as the square of the distance.

Listening to Hooke were Sir Christopher Wren (1632-1723), the designer of St. Paul’s
Cathedral, and the young astronomer, Edmund Halley (1656-1742). Wren challenged
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Hooke to produce his calculations; and he offered to present Hooke with a book worth
40 shillings if he could prove his inverse square force law by means of rigorous mathemat-
ics. Hooke tried for several months, but he was unable to win Wren’s reward.

Meanwhile, in August, 1684, Halley made a journey to Cambridge to talk with Newton,
who was rumored to know very much more about the motions of the planets than he had
revealed in his published papers. According to an almost-contemporary account, what
happened then was the following:

“Without mentioning his own speculations, or those of Hooke and Wren, he (Halley)
at once indicated the object of his visit by asking Newton what would be the curve de-
scribed by the planets on the supposition that gravity diminished as the square of the
distance. Newton immediately answered: an Ellipse. Struck with joy and amazement,
Halley asked how he knew it? ‘Why’, replied he, ‘I have calculated it’; and being asked for
the calculation, he could not find it, but promised to send it to him.”

Newton soon reconstructed the calculation and sent it to Halley; and Halley, filled with
enthusiasm and admiration, urged Newton to write out in detail all of his work on motion
and gravitation. Spurred on by Halley’s encouragement and enthusiasm, Newton began to
put his research in order. He returned to the problems which had occupied him during the
plague years, and now his progress was rapid because he had invented integral calculus.
This allowed him to prove rigorously that terrestrial gravitation acts as though all the
earth’s mass were concentrated at its center. Newton also had available an improved value
for the radius of the earth, measured by the French astronomer Jean Picard (1620-1682).
This time, when he approached the problem of gravitation, everything fell into place.

By the autumn of 1684, Newton was ready to give a series of lectures on dynamics,
and he sent the notes for these lectures to Halley in the form of a small booklet entitled
On the Motion of Bodies. Halley persuaded Newton to develop these notes into a larger
book, and with great tact and patience he struggled to keep a controversy from developing
between Newton, who was neurotically sensitive, and Hooke, who was claiming his share
of recognition in very loud tones, hinting that Newton was guilty of plagiarism.

Newton reacted by striking out from his book every single reference to Robert Hooke.
The Royal Society at first offered to pay for the publication costs of Newton’s book, but
because a fight between Newton and Hooke seemed possible, the Society discretely backed
out. Halley then generously offered to pay the publication costs himself, and in 1686 New-
ton’s great book was printed. It is entitled Philosophae Naturalis Principia Mathematica,
(The Mathematical Principles of Natural Philosophy), and it is divided into three sections.

The first book sets down the general principles of mechanics. In it, Newton states his
three laws of motion, and he also discusses differential and integral calculus (both invented
by himself).

In the second book, Newton applies these methods to systems of particles and to hydro-
dynamics. For example, he calculates the velocity of sound in air from the compressibility
and density of air; and he treats a great variety of other problems, such as the problem of
calculating how a body moves when its motion is slowed by a resisting medium, such as
air or water.

The third book is entitled The System of the World. In this book, Newton sets out to
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Figure 1.6: Newton: “I do not know what I may appear to the world, but
to myself I seem to have been only like a boy playing on the seashore, and
diverting myself in now and then finding a smoother pebble or a prettier shell
than ordinary, whilst the great ocean of truth lay all undiscovered before me.”

derive the entire behavior of the solar system from his three laws of motion and from his
law of universal gravitation. From these, he not only derives all three of Kepler’s laws, but
he also calculates the periods of the planets and the periods of their moons; and he explains
such details as the flattened, non-spherical shape of the earth, and the slow precession of
its axis about a fixed axis in space. Newton also calculated the irregular motion of the
moon resulting from the combined attractions of the earth and the sun; and he determined
the mass of the moon from the behavior of the tides.

Newton’s Principia is generally considered to be one of the greatest scientific works
of all time. To present a unified theory explaining such a wide variety of phenomena
with so few assumptions was a magnificent and unprecedented achievement; and Newton’s
contemporaries immediately recognized the importance of what he had done.

The great Dutch physicist, Christian Huygens (1629-1695), inventor of the pendulum
clock and the wave theory of light, travelled to England with the express purpose of meeting
Newton. Voltaire, who for reasons of personal safety was forced to spend three years in
England, used the time to study Newton’s Principia; and when he returned to France,
he persuaded his mistress, Madame du Chatelet, to translate the Principia into French;
and Alexander Pope, expressing the general opinion of his contemporaries, wrote a famous
couplet, which he hoped would be carved on Newton’s tombstone:

“Nature and Nature’s law lay hid in night.
God said: ‘Let Newton be!’; and all was light!”
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1.7 Albert Einstein

Newton’s laws of gravitation and motion stood unchallenged until the 20th century, when
Einstein showed that they were only approximately correct. Albert Einstein was born in
Ulm, Germany, in 1879. He was the son of middle-class, irreligious Jewish parents, who
sent him to a Catholic school. Einstein was slow in learning to speak, and at first his
parents feared that he might be retarded; but by the time he was eight, his grandfather
could say in a letter: “Dear Albert has been back in school for a week. I just love that
boy, because you cannot imagine how good and intelligent he has become.”

Remembering his boyhood, Einstein himself later wrote: “When I was 12, a little book
dealing with Euclidean plane geometry came into my hands at the beginning of the school
year. Here were assertions, as for example the intersection of the altitudes of a triangle in
one point, which, though by no means self-evident, could nevertheless be proved with such
certainty that any doubt appeared to be out of the question. The lucidity and certainty
made an indescribable impression on me.”

When Albert Einstein was in his teens, the factory owned by his father and uncle began
to encounter hard times. The two Einstein families moved to Italy, leaving Albert alone
and miserable in Munich, where he was supposed to finish his course at the gymnasium.
Einstein’s classmates had given him the nickname “Beidermeier”, which means something
like “Honest John”; and his tactlessness in criticizing authority soon got him into trouble.
In Einstein’s words, what happened next was the following: “When I was in the seventh
grade at the Lutpold Gymnasium, I was summoned by my home-room teacher, who ex-
pressed the wish that I leave the school. To my remark that I had done nothing wrong, he
replied only, “Your mere presence spoils the respect of the class for me’.”

Einstein left gymnasium without graduating, and followed his parents to Italy, where
he spent a joyous and carefree year. He also decided to change his citizenship. “The
over-emphasized military mentality of the German State was alien to me, even as a boy”,
Einstein wrote later. “When my father moved to Italy, he took steps, at my request, to
have me released from German citizenship, because I wanted to be a Swiss citizen.”

The financial circumstances of the Einstein family were now precarious, and it was clear
that Albert would have to think seriously about a practical career. In 1896, he entered
the famous Ziirich Polytechnic Institute with the intention of becoming a teacher of math-
ematics and physics. However, his undisciplined and nonconformist attitudes again got
him into trouble. His mathematics professor, Hermann Minkowski (1864-1909), considered
Einstein to be a “lazy dog”; and his physics professor, Heinrich Weber, who originally had
gone out of his way to help Einstein, said to him in anger and exasperation: “You're a
clever fellow, but you have one fault: You won’t let anyone tell you a thing! You won’t let
anyone tell you a thing!”

Einstein missed most of his classes, and read only the subjects which interested him. He
was interested most of all in Maxwell’s theory of electro-magnetism, a subject which was
too “modern” for Weber. There were two major examinations at the Ziirich Polytechnic
Institute, and Einstein would certainly have failed them had it not been for the help of his
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loyal friend, the mathematician Marcel Grossman.

Grossman was an excellent and conscientious student, who attended every class and
took meticulous notes. With the help of these notes, Einstein managed to pass his ex-
aminations; but because he had alienated Weber and the other professors who could have
helped him, he found himself completely unable to get a job. In a letter to Professor F.
Ostwald on behalf of his son, Einstein’s father wrote: “My son is profoundly unhappy
because of his present joblessness; and every day the idea becomes more firmly implanted
in his mind that he is a failure, and will not be able to find the way back again.”

From this painful situation, Einstein was rescued (again!) by his friend Marcel Gross-
man, whose influential father obtained for Einstein a position at the Swiss Patent Office:
Technical Expert (Third Class). Anchored at last in a safe, though humble, position, Ein-
stein married one of his classmates. He learned to do his work at the Patent Office very
efficiently; and he used the remainder of his time on his own calculations, hiding them
guiltily in a drawer when footsteps approached.

In 1905, this Technical Expert (Third Class) astonished the world of science with five
papers, written within a few weeks of each other, and published in the Annalen der Physik.
Of these five papers, three were classics: One of these was the paper in which Einstein ap-
plied Planck’s quantum hypothesis to the photoelectric effect. The second paper discussed
“Brownian motion”, the zig-zag motion of small particles suspended in a liquid and hit
randomly by the molecules of the liquid. This paper supplied a direct proof of the validity
of atomic ideas and of Boltzmann’s kinetic theory. The third paper was destined to estab-
lish Einstein’s reputation as one of the greatest physicists of all time. It was entitled “On
the Electrodynamics of Moving Bodies”, and in this paper, Albert Einstein formulated his
special theory of relativity. Essentially, this theory maintained that all of the fundamental
laws of nature exhibit a symmetry with respect to rotations in a 4-dimensional space-time
continuum.

Gradually, the importance of Einstein’s work began to be realized, and he was much
sought after. He was first made Assistant Professor at the University of Ziirich, then full
Professor in Prague, then Professor at the Ziirich Polytechnic Institute; and finally, in
1913, Planck and Nernst persuaded Einstein to become Director of Scientific Research at
the Kaiser Wilhelm Institute in Berlin. He was at this post when the First World War
broke out

While many other German intellectuals produced manifestos justifying Germany’s in-
vasion of Belgium, Einstein dared to write and sign an anti-war manifesto. Einstein’s
manifesto appealed for cooperation and understanding among the scholars of Europe for
the sake of the future; and it proposed the eventual establishment of a League of Euro-
peans. During the war, Einstein remained in Berlin, doing whatever he could for the cause
of peace, burying himself unhappily in his work, and trying to forget the agony of Europe,
whose civilization was dying in a rain of shells, machine-gun bullets, and poison gas.

The work into which Einstein threw himself during this period was an extension of
his theory of relativity. He already had modified Newton’s equations of motion so that
they exhibited the space-time symmetry required by his Principle of Special Relativity.
However, Newton’s law of gravitation. remained a problem.
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Obviously it had to be modified, since it disagreed with his Special Theory of Relativity;
but how should it be changed? What principles could Einstein use in his search for a more
correct law of gravitation? Certainly whatever new law he found would have to give results
very close to Newton’s law, since Newton’s theory could predict the motions of the planets
with almost perfect accuracy. This was the deep problem with which he struggled.

In 1907, Einstein had found one of the principles which was to guide him, the Principle
of Equivalence of inertial and gravitational mass. After turning Newton’s theory over and
over in his mind, Einstein realized that Newton had used mass in two distinct ways: His
laws of motion stated that the force acting on a body is equal to the mass of the body
multiplied by its acceleration; but according to Newton, the gravitational force on a body
is also proportional to its mass. In Newton’s theory, gravitational mass, by a coincidence,
is equal to inertial mass; and this holds for all bodies. FEinstein decided to construct a
theory in which gravitational and inertial mass necessarily have to be the same.

He then imagined an experimenter inside a box, unable to see anything outside it. If
the box is on the surface of the earth, the person inside it will feel the pull of the earth’s
gravitational field. If the experimenter drops an object, it will fall to the floor with an
acceleration of 32 feet per second per second. Now suppose that the box is taken out into
empty space, far away from strong gravitational fields, and accelerated by exactly 32 feet
per second per second. Will the enclosed experimenter be able to tell the difference between
these two situations? Certainly no difference can be detected by dropping an object, since
in the accelerated box, the object will fall to the floor in exactly the same way as before.

With this “thought experiment” in mind, Einstein formulated a general Principle of
Equivalence: He asserted that no experiment whatever can tell an observer enclosed in a
small box whether the box is being accelerated, or whether it is in a gravitational field.
According to this principle, gravitation and acceleration are locally equivalent, or, to say
the same thing in different words, gravitational mass and inertial mass are equivalent.

Einstein soon realized that his Principle of Equivalence implied that a ray of light must
be bent by a gravitational field. This conclusion followed because, to an observer in an
accelerated frame, a light beam which would appear straight to a stationary observer, must
necessarily appear very slightly curved. If the Principle of Equivalence held, then the same
slight bending of the light ray would be observed by an experimenter in a stationary frame
in a gravitational field.

Another consequence of the Principle of Equivalence was that a light wave propagating
upwards in a gravitational field should be very slightly shifted to the red. This followed
because in an accelerated frame, the wave crests would be slightly farther apart than they
normally would be, and the same must then be true for a stationary frame in a gravitational
field. It seemed to Einstein that it ought to be possible to test experimentally both the
gravitational bending of a light ray and the gravitational red shift.

This seemed promising; but how was Einstein to proceed from the Principle of Equiva-
lence to a formulation of the law of gravitation? Perhaps the theory ought to be modeled
after Maxwell’s electromagnetic theory, which was a field theory, rather than an “action at
a distance” theory. Part of the trouble with Newton’s law of gravitation was that it allowed
a signal to be propagated instantaneously, contrary to the Principle of Special Relativity.
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A field theory of gravitation might cure this defect, but how was Einstein to find such a
theory? There seemed to be no way.

From these troubles Albert Einstein was rescued (a third time!) by his staunch friend
Marcel Grossman. By this time, Grossman had become a professor of mathematics in
Ziirich, after having written a doctoral dissertation on tensor analysis and non-Euclidean
geometry, the very things that Einstein needed. The year was then 1912, and Einstein had
just returned to Ziirich as Professor of Physics at the Polytechnic Institute. For two years,
Einstein and Grossman worked together; and by the time Einstein left for Berlin in 1914,
the way was clear. With Grossman’s help, Einstein saw that the gravitational field could
be expressed as a curvature of the 4-dimensional space-time continuum.

In 1919, a British expedition, headed by Sir Arthur Eddington, sailed to a small island
off the coast of West Africa. Their purpose was to test Einstein’s prediction of the bending
of light in a gravitational field by observing stars close to the sun during a total eclipse.
The observed bending agreed exactly with Einstein’s predictions; and as a result he became
world-famous. The general public was fascinated by relativity, in spite of the abstruseness
of the theory (or perhaps because of it). Einstein, the absent-minded professor, with long,
uncombed hair, became a symbol of science. The world was tired of war, and wanted
something else to think about.

In its original version, Einstein’s theory of relativity predicted an expansion of the
universe. However. since the universe was then thought to be static, Einstein later added
to his equations a “cosmological constant” that led to a static non-expanding universe.
Later, in 1929, when the discoveries of Edwin Hubble showed that the universe is indeed
expanding, Einstein said that he considered his cosmological constant to be the biggest
blunder of his life.
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Figure 1.7: Albert Einstein (1879-1955) during a lecture in Vienna in 1921.
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1.8 Edwin Hubble

Edwin Hubble’s father wanted him to become a lawyer, and following his father’s dying
request, he studied law, first at the University of Chicago, and then at Oxford University.
However, his true passion was astronomy. During his Oxford law studies, he managed to
take a number of science course. After the end of World War I, he became a student at
Cambridge University, this time abandoning law and studying astronomy full-time.

In 1919, Hubble was offered a position at the Mount Wilson Observatory in Pasadena
California, a position which he held until his death in 1953. Just as Hubble arrived, the
Mount Wilson Observatory acquired the 100 inch Hooker telescope. At that time it was
the world’s largest, and it helped Hubble to make his important discoveries.

Hubble’s special attention was drawn to the Cephiad variable stars, whose brightness
varied with a characteristic period. A relationship between the period of Cephiad variable
stars and their luminosity had been discovered in 1908 by Henrietta Swan Levitt. Her
discovery allowed astronomers to calculate the distance of a variable star by comparing
its period with its apparent brightness. Using this relationship, Hubble was able to show
that some of the variable stars which he could observe with the Hooker telescope were too
far away to be part of our own galaxy. His studies of the Andromeda nebula, which had
previously been thought to be a cloud of gas within our own galaxy, proved that it was in
fact an entire galaxy very similar to our own Milky Way.

Edwin Hubble used the Doppler effect to make a second extremely important discovery.
When a star is moving away from the earth, the light from the star is shifted to the red.
In other words each colour of light has a longer wave length than it would have if the star
were stationary or moving towards us. This is similar to the effect that we can notice
when the sound of the whistle of an approaching railway train falls in pitch as the train
passes us and moves away. Hubble discovered that the red shift due to the Doppler effect
is greatest for the galaxies that are farthest from the earth. This discovery, which is known
as Hubble’s Law, is interpreted by most astronomers as indicating that our universe as a
whole is expanding.

In 1924, Edwin Hubble, who was then 35 years old, announced his epoch-making dis-
coveries in the New York Times. In January, 1925, he followed this announcement with a
formal paper, presented to a meeting of the American Astronomical Society.

Hubble’s name is perhaps best known to the public because of the space telescope
named after him. Why put a telescope into space? The reason is that for telescopes on
even the highest of mountains, fluctuations in the density of air above them limits the
resolution that they can achieve. Since the Hubble space telescope is completely above the
earth’s atmosphere, it has been able to send us remarkable images of our universe.
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Figure 1.8: Edwin Hubble (1889-1953).

Figure 1.9: The Andromeda spiral nebula.
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Figure 1.10: The Hubble space telescope
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Figure 1.11: The standard model of our universe.
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Figure 1.12: Arno Penzias and Robert Woodrow Wilson, discoverers of the echo
of the Big Bang.

1.9 The Big Bang

If the Universe is expanding, as Hubble’s Law suggests, then it is logical to extrapolate
backward in time, and to suppose that the Universe expanded outward from one place.
According to this model this model, which is called the Standard Model of cosmology, or
Big Bang Theory, the Universe exploded outward from an extremely hot and dense initial
state, gradually cooling as it expandedﬂ

The Standard Model was first proposed 1927 by Georges Lemaitre and Alexander Fried-
mann on the basis of their solutions to Einstein’s general relativistic equations. In 1929 the
model was supported by Hubble’s discoveries. Until the late 1950’s, there were competing
models, such as the Steady State Cosmology proposed by Fred Hoyle. However in more
recent times, very strong evidence has accumulated to support the Standard Model. This
evidence includes the large-scale structure of the Universe, the abundances of elements.

Crucial evidence supporting the Standard Model was discovered by accident in 1964.
Working at the Bell Laboratories in New Jersey, Arno Penzias and Robert Woodrow Wilson
were experimenting with a super-sensitive 6 meter microwave horn antenna designed to
pick up the signals from radio waves bounced off Echo balloon satellites. They tried to
remove all the interfering signals from radar and radio broadcasts by cooling their receiver
with liquid helium. However, despite their efforts, they could not get rid of a mysterious
microwave background radiation that seemed to be coming equally from all directions,
both day and night. They had no idea of what was causing this mysterious background.

Meanwhile, at Princeton University, only sixty miles away, astrophysicists Robert H.
Dicke, Jim Peebls and David Wilkinson, building on the earlier work of George Gamow, had

!Today this initial state is believed to have been infinitely hot and infinitely dense, i.e. a singularity.
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written a paper on the cosmic background radiation that they thought should be present
on theoretical grounds. During the expansion and cooling of the Universe, a moment
occurred when atoms formed, and the radiation characteristic of the temperature at that
time was suddenly free to propagate outward. By now, the Princeton group calculated,
this radiation should be red shifted so far that it would now lie in the microwave region.

As it happened, Bernard F. Burke of MIT knew of both the Bell Labs experiments
and the Princeton group’s theoretical work. He brought them all together, and a joint
publication was arranged. In 1978, Penzias and Wilson were awarded a Nobel Prize on
Physics for their experimental discovery of what might be called “the echo of the Big
Bang”. This was the crucial piece of evidence supporting the Standard Model.

Today, our Universe is believed to be 13.72 billion years old. When it cooled enough
for atoms to form, only hydrogen extremely small amounts of helium were present. The
heavier elements are thought to have been synthesized through nuclear reactions in the
interior of stars.

The Wikipedia article on stellar evolution states that all stars are born from collapsing
clouds of gas and dust... Quer the course of millions of years, these protostars settle down
into a state of equilibrium, becoming what is known as a main-sequence star.

Nuclear fusion powers a star for most of its life. Initially the energy is generated by the
fusion of hydrogen atoms at the core of the main-sequence star. Later, as the preponderance
of atoms at the core becomes helium, stars like the Sun begin to fuse hydrogen along a
spherical shell surrounding the core. This process causes the star to gradually grow in
size, passing through the subgiant stage until it reaches the red giant phase. Stars with
at least half the mass of the Sun can also begin to generate energy through the fusion of
helium at their core, whereas more-massive stars can fuse heavier elements along a series of
concentric shells. Once a star like the Sun has exhausted its nuclear fuel, its core collapses
into a dense white dwarf and the outer layers are expelled as a planetary nebula. Stars
with around ten or more times the mass of the Sun can explode in a supernova as their
wnert iron cores collapse into an extremely dense neutron star or black hole. Although the
universe is not old enough for any of the smallest red dwarfs to have reached the end of
their lives, stellar models suggest they will slowly become brighter and hotter before running
out of hydrogen fuel and becoming low-mass white dwarfs.

Our local star, the sun, is middle-sized and middle-aged. It was formed an estimated
4.6 billion years ago, and will last another 5 billion years or so before expanding into a red
giant. At the moment it lies of the main sequence in the temperature-luminosity diagram.
Evidence from abundances of radioactive elements and their decay products indicates that
our earth was formed soon after the sun, roughly 4.54 billion years ago.

Modern astronomy has shown the Universe to be almost unimaginably large. Wikipedia
states that: “The size of the Universe is unknown; it may be infinite. The region visible
from Earth (the observable universe) is a sphere with a radius of about 46 billion light
years, based on where the expansion of space has taken the most distant objects observed.
For comparison, the diameter of a typical galaxy is 30,000 light-years, and the typical
distance between two neighboring galaxies is 3 million light-years. As an example, the
Milky Way Galaxy is roughly 100,000 light years in diameter, and the nearest sister galaxy
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to the Milky Way, the Andromeda Galaxy, is located roughly 2.5 million light years away.
There are probably more than 100 billion (10') galaxies in the observable Universe. Typical
galaxies range from dwarfs with as few as ten million (107) stars up to giants with one
trillion(10'?) stars, all orbiting the galaxy’s center of mass. A 2010 study by astronomers
estimated that the observable Universe contains 300 sextillion (3 x 10%*) stars.”

Among this incredibly vast number of stars it is believed that there are innumerable
stars that have planets similar to the Earth and hence able to support life. We also
now know that given conditions that are favorable to life, it will almost certainly develop
and evolve. The Earth seems to be only of extremely minor importance on the scale
of the Universe. Given these facts, and given that the fundamental laws of nature are
mathematical, it is difficult to maintain that the entire Universe and the laws that govern
it were arranged for the benefit of humans, especially since humans have only existed for
a brief instant on the time-scale of the Universe. If asked where the Universe came from
and why, the scientist must answer with honesty, “I don’t know”.

1.10 Timeline of epochs in cosmology

For readers with a taste for particle physics and/or astronomy, here is a cosmological
timeline from a Wikipedia article entitled Timeline of epochs in cosmology. (Other readers
can skip directly to the next chapter!)

Planck epoch

e c. 0 seconds (13.799 + 0.021 Gya): Planck Epoch begins: earliest mean-
ingful time. The Big Bang occurs in which ordinary space and time de-
velop out of a primeval state (possibly a virtual particle or false vacuum)
described by a quantum theory of gravity or ” Theory of Everything”. All
matter and energy of the entire visible universe is contained in a hot,
dense point (gravitational singularity), a billionth the size of a nuclear
particle. This state has been described as a particle desert. Other than
a few scant details, conjecture dominates discussion about the earliest
moments of the universe’s history since no effective means of testing this
far back in space-time is presently available. WIMPS (weakly interacting
massive particles) or dark matter and dark energy may have appeared and
been the catalyst for the expansion of the singularity. The infant universe
cools as it begins expanding outward. It is almost completely smooth,
with quantum variations beginning to cause slight variations in density.
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Grand unification epoch

e c. 107* seconds: Grand unification epoch begins: While still at an in-
finitesimal size, the universe cools down to 10%? kelvin. Gravity separates
and begins operating on the universe - the remaining fundamental forces
stabilize into the electronuclear force, also known as the Grand Unified
Force or Grand Unified Theory (GUT), mediated by (the hypothetical) X
and Y bosons which allow early matter at this stage to fluctuate between
baryon and lepton states.

Electroweak epoch

e c. 107% seconds: Electroweak epoch begins: The Universe cools down to
1028 kelvin. As a result, the strong nuclear force becomes distinct from
the electroweak force perhaps fuelling the inflation of the universe. A
wide array of exotic elementary particles result from decay of X and Y
bosons which include W and Z bosons and Higgs bosons.

e c. 1073 seconds: Space is subjected to inflation, expanding by a factor of
the order of 1026 over a time of the order of 1073 to 10732 seconds. The
universe is supercooled from about 10*” down to 10?2 kelvin.

e c. 1073 seconds: Cosmic inflation ends. The familiar elementary particles
now form as a soup of hot ionized gas called quark-gluon plasma; hypo-
thetical components of cold dark matter (such as axions) would also have
formed at this time.

Quark epoch

e c. 107!2 seconds: Electroweak phase transition: the four fundamental
interactions familiar from the modern universe now operate as distinct
forces. The weak nuclear force is now a short-range force as it separates
from electromagnetic force, so matter particles can acquire mass and in-
teract with the Higgs Field. The temperature is still too high for quarks to
coalesce into hadrons, and the quark-gluon plasma persists (Quark epoch).
The universe cools to 10*° kelvin.

e c. 107! seconds: Baryogenesis may have taken place with matter gaining
the upper hand over anti-matter as baryon to antibaryon constituencies
are established.

Hadron epoch

e c. 107% seconds: Hadron epoch begins: As the universe cools to about
1019 kelvin, a quark-hadron transition takes place in which quarks bind to
form more complex particles - hadrons. This quark confinement includes
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the formation of protons and neutrons (nucleons), the building blocks of
atomic nuclei.

Lepton epoch

e c. 1 second: Lepton epoch begins: The universe cools to 10° kelvin. At this
temperature, the hadrons and antihadrons annihilate each other, leaving
behind leptons and antileptons - possible disappearance of antiquarks.
Gravity governs the expansion of the universe: neutrinos decouple from
matter creating a cosmic neutrino background.

Photon epoch

e c. 10 seconds: Photon epoch begins: Most of the leptons and antileptons
annihilate each other. As electrons and positrons annihilate, a small num-
ber of unmatched electrons are left over - disappearance of the positrons.

e c. 10 seconds: Universe dominated by photons of radiation - ordinary
matter particles are coupled to light and radiation while dark matter par-
ticles start building non-linear structures as dark matter halos. Because
charged electrons and protons hinder the emission of light, the universe
becomes a super-hot glowing fog.

e c. 3 minutes: Primordial nucleosynthesis: nuclear fusion begins as lithium
and heavy hydrogen (deuterium) and helium nuclei form from protons and
neutrons.

e c. 20 minutes: Nuclear fusion ceases: normal matter consists of 75%
hydrogen nuclei and 25% helium nuclei - free electrons begin scattering
light.

Matter era

Matter and radiation equivalence

e c. 47,000 years (z=3600): Matter and radiation equivalence: at the be-
ginning of this era, the expansion of the universe was decelerating at a
faster rate.

e c. 70,000 years: Matter domination in Universe: onset of gravitational
collapse as the Jeans length at which the smallest structure can form
begins to fall.

Cosmic Dark Age

e c. 370,000 years (z=1,100): The “Dark Ages” is the period between de-
coupling, when the universe first becomes transparent, until the formation
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of the first stars. Recombination: electrons combine with nuclei to form
atoms, mostly hydrogen and helium. Distributions of hydrogen and he-
lium at this time remains constant as the electron-baryon plasma thins.
The temperature falls to 3000 kelvin. Ordinary matter particles decouple
from radiation. The photons present at the time of decoupling are the
same photons that we see in the cosmic microwave background (CMB)
radiation.

c. 400,000 years: Density waves begin imprinting characteristic polariza-
tion (waves) signals.

c. 10-17 million years: The “Dark Ages” span a period during which the
temperature of cosmic background radiation cooled from some 4000 K
down to about 60 K. The background temperature was between 373 K
and 273 K, allowing the possibility of liquid water, during a period of about
7 million years, from about 10 to 17 million after the Big Bang (redshift
137-100). Loeb (2014) speculated that primitive life might in principle
have appeared during this window, which he called “the Habitable Epoch
of the Early Universe”

c. 100 million years: Gravitational collapse: ordinary matter particles fall
into the structures created by dark matter. Reionization begins: smaller
(stars) and larger non-linear structures (quasars) begin to take shape -
their ultraviolet light ionizes remaining neutral gas.

200-300 million years: First stars begin to shine: Because many are Pop-
ulation III stars (some Population II stars are accounted for at this time)
they are much bigger and hotter and their life-cycle is fairly short. Unlike
later generations of stars, these stars are metal free. As reionization in-
tensifies, photons of light scatter off free protons and electrons - Universe
becomes opaque again.

200 million years: HD 140283, the “Methuselah” Star, formed, the uncon-
firmed oldest star observed in the Universe. Because it is a Population II
star, some suggestions have been raised that second generation star for-
mation may have begun very early on. The oldest-known star (confirmed)
- SMSS J031300.36-670839.3, forms.

300 million years: First large-scale astronomical objects, protogalaxies
and quasars may have begun forming. As Population III stars continue to
burn, stellar nucleosynthesis operates - stars burn mainly by fusing hydro-
gen to produce more helium in what is referred to as the main sequence.
Over time these stars are forced to fuse helium to produce carbon, oxy-
gen, silicon and other heavy elements up to iron on the periodic table.
These elements, when seeded into neighbouring gas clouds by supernova,
will lead to the formation of more Population II stars (metal poor) and
gas giants.

380 million years: UDFj-39546284 forms, current record holder for un-
confirmed oldest-known quasar.
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e 400 million years (z=11): GN-z11, the oldest-known galaxy, forms.
e 420 million years: The quasar MACS0647-JD, the, or one of the, furthest

known quasars, forms.

600 million years HE 1523-0901, the oldest star found producing neutron
capture elements forms, marking a new point in ability to detect stars
with a telescope.

630 million years (z=8.2): GRB 090423, the oldest gamma ray burst
recorded suggests that supernovas may have happened very early on in
the evolution of the Universe.

670 million years: EGS-zs8-1, the most distant starburst or Lyman-break
galaxy observed, forms. This suggests that galaxy interaction is taking
place very early on in the history of the Universe as starburst galaxies are
often associated with collisions and galaxy mergers.

700 million years: Galaxies form. Smaller galaxies begin merging to form
larger ones. Galaxy classes may have also begun forming at this time
including Blazars, Seyfert galaxies, radio galaxies, and dwarf galaxies as
well as regular types (elliptical, barred spiral, and spiral galaxies). UDFy-
38135539, the first distant quasar to be observed from the reionization
phase, forms. Dwarf galaxy z8 GND 5296 forms. Galaxy or possible
proto-galaxy A1689-zD1 forms.

720 million years: Possible formation of globular clusters in Milky Way’s
Galactic halo. Formation of globular cluster, NGC 6723, in the Milky
Way’s galactic halo.

740 million years: 47 Tucanae, second-brightest globular cluster in the
Milky Way, forms.

750 million years: Galaxy IOK-1 a Lyman alpha emitter galaxy, forms.
GN-108036 forms - galaxy is 5 times larger and 100 times more massive
than the present day Milky Way illustrating the size attained by some
galaxies very early on.

770 million years: Quasar ULAS J11204-0641, one of the most distant,
forms. One of the earliest galaxies to feature a supermassive black hole
suggesting that such large objects existed quite soon after the Big Bang.
The large fraction of neutral hydrogen in its spectrum suggests it may
also have just formed or is in the process of star formation.

800 million years: Farthest extent of Hubble Ultra Deep Field. Formation
of SDSS J1029154172927: unusual population II star that is extremely
metal poor consisting of mainly hydrogen and helium. HE0107-5240, one
of the oldest Population II stars, forms as part of a binary star system.
LAE J095950.994-021219.1, one of the most remote Lyman alpha emitter
galaxies, forms. Lyman alpha emitters are considered to be the progen-
itors of spiral galaxies like the Milky Way. Messier 2, globular cluster,
forms.
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870 million years: Messier 30 forms in the Milky Way. Having experienced
a Core collapse (cluster), the cluster has one of the highest densities among
globular clusters.

890 million years: Galaxy SXDF-NB1006-2 forms.

e 900 million years: Galaxy BDF-3299 forms

910 million years: Galaxy BDF-521 forms.

Galaxy epoch

1 billion years (12.8 Gya, z=6.56): Galaxy HCM-6A, the most distant nor-
mal galaxy observed, forms. Formation of hyper-luminous quasar SDSS
J0100+2802, which harbors a black hole with mass of 12 billion solar
masses, one of the most massive black holes discovered so early in the
universe. HE1327-2326, a population II star, is speculated to have formed
from remnants of earlier Population III stars. Visual limit of the Hubble
Deep Field. Reionization complete - the Universe becomes transparent
again. Galaxy evolution continues as more modern looking galaxies form
and develop. Because the Universe is still small in size, galaxy interac-
tions become common place with larger and larger galaxies forming out of
the galaxy merger process. Galaxies may have begun clustering creating
the largest structures in the Universe so far - the first galaxy clusters and
galaxy superclusters appear.

1.1 billion years (12.7 Gya): Age of the quasar CFHQS 1641+3755. Messier
4 Globular Cluster, first to have its individual stars resolved, forms in the
halo of the Milky Way Galaxy. Among the clusters many stars, PSR
B1620-26 b, a gas giant known as the “Genesis Planet” or “Methusaleh”,
orbiting a pulsar and a white dwarf, the oldest observed extrasolar planet
in Universe, forms.

1.13 billion years (12.67 Gya): Messier 12, globular cluster, forms.

1.3 billion years (12.5 Gya): WISE J224607.57-052635.0, a luminous in-
frared galaxy, forms. PSR J1719-1438 b, known as the Diamond Planet,
forms around a pulsar.

1.31 billion years (12.49 Gya): Globular Cluster Messier 53 forms 60,000
light-years from the galactic centre of the Milky Way.

1.39 billion years (12.41 Gya): S5 0014+81, a hyper-luminous quasar,
forms.

1.4 billion years (12.4 Gya): Age of Cayrel’s Star, BPS C531082-0001, a
neutron capture star, among the oldest Population II stars in Milky Way.
Quasar RD1, first object observed to exceed redshift 5, forms.

1.44 billion years (12.36 Gya): Messier 80 globular cluster forms in Milky
Way - known for large number of “blue stragglers”.

1.5 billion years (12.3 Gya): Messier 55, globular cluster, forms.
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1.8 billion years (12 Gya): Most energetic gamma ray burst lasting 23
minutes, GRB 080916C, recorded. Baby Boom Galaxy forms. Terzan 5
forms as a small dwarf galaxy on collision course with the Milky Way.
Dwarf galaxy carrying the Methusaleh Star consumed by Milky Way -
oldest-known star in the Universe becomes one of many population II
stars of the Milky Way.

2.0 billion years (11.8 Gya): SN 100040216, the oldest observed supernova
occurs - possible pulsar formed. Globular Cluster Messier 15, known to
have an intermediate black hole and the only globular cluster observed to
include a planetary nebula, Pease 1, forms.

2.02 billion years (11.78 Gya): Messier 62 forms - contains high number
of variable stars (89) many of which are RR Lyrae stars.

2.2 billion years (11.6 Gya): Globular Cluster NGC 6752, third-brightest,
forms in Milky Way.

2.4 billion years (11.4 Gya): Quasar PKS 2000-330 forms.

2.41 billion years (11.39 Gya): Messier 10 globular cluster forms. Messier
3 forms: prototype for the Oosterhoff type I cluster, which is considered
“metal-rich”. That is, for a globular cluster, Messier 3 has a relatively
high abundance of heavier elements.

2.5 billion years (11.3 Gya): Omega Centauri, largest globular cluster in
the Milky Way forms.

3.0 billion years (10.8 billion Gya): Formation of the Gliese 581 planetary
system: Gliese 581c, the first observed ocean planet and Gliese 581d,
a super-earth planet, possibly the first observed habitable planets, form.
Gliese 581d has more potential for forming life since it is the first exoplanet
of terrestrial mass proposed that orbits within the habitable zone of its
parent star.

3.3 billion years (10.5 Gya): BX442, oldest grand design spiral galaxy
observed, forms.

3.5 billion years (10.3 Gya): Supernova SN UDS10Wil recorded.

3.8 billion years (10 Gya): NGC 2808 globular cluster forms: 3 generations
of stars form within the first 200 million years.

4.0 billion years (9.8 Gya): Quasar 3C 9 forms. The Andromeda Galaxy
forms from a galactic merger - begins a collision course with the Milky
Way. Barnard’s Star, red dwarf star, may have formed. Beethoven Burst
GRB 991216 recorded. Gliese 677 Cc, a planet in the habitable zone of
its parent star, Gliese 667, forms.

4.5 billion years (9.3 Gya): Fierce star formation in Andromeda making
it into a luminous infra-red galaxy.

5.0 billion years (8.8 Gya): Earliest Population I, or Sunlike stars: with
heavy element saturation so high, planetary nebula appear in which rocky
substances are solidified - these nurseries lead to the formation of rocky
terrestrial planets, moons, asteroids, and icy comets.
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5.1 billion years (8.7 Gya): Galaxy collision: spiral arms of the Milky Way
form leading to major period of star formation.

5.3 billion years (8.5 Gya): 55 Cancri B, a “hot Jupiter”, first planet to
be observed orbiting as part of a star system, forms. Kepler 11 planetary
system, the flattest and most compact system yet discovered, forms -
Kepler 11 c considered to be a giant ocean planet with hydrogen-helium
atmosphere.

5.8 billion years (8 Gya): 51 Pegasi b also known as Bellerophon, forms -
first planet discovered orbiting a main sequence star.

5.9 billion years (7.9 Gya): HD 176051 planetary system, known as the
first observed through astrometrics, forms.

6.0 billion years (7.8 Gya): Many galaxies like NGC 4565 become rela-
tively stable - ellipticals result from collisions of spirals with some like IC
1101 being extremely massive.

6.0 billion years (7.8 Gya): The Universe continues to organize into larger
wider structures. The great walls, sheets and filaments consisting of
galaxy clusters and superclusters and voids crystallize. How this crys-
tallization takes place is still conjecture. Certainly, it is possible the for-
mation of super-structures like the Hercules-Corona Borealis Great Wall
may have happened much earlier, perhaps around the same time galaxies
first started appearing. Either way the observable universe becomes more
modern looking.

6.2 billion years (7.7 Gya): 16 Cygni Bb, the first gas giant observed in a
single star orbit in a trinary star system, forms - orbiting moons considered
to have habitable properties or at the least capable of supporting water.
6.3 billion years (7.5 Gya, z=0.94): GRB 080319B, farthest gamma ray
burst seen with the naked eye, recorded. Terzan 7, metal-rich globular
cluster, forms in the Sagittarius Dwarf Elliptical Galaxy.

6.5 billion years (7.3 Gya): HD 10180 planetary system forms (larger than
both 55 Cancri and Kepler 11 systems).

6.9 billion years (6.9 Gya): Orange Giant, Arcturus, forms.

7 billion years (6.8 Gya): North Star, Polaris, one of the significant navi-
gable stars, forms.

7.64 billion years (6.16 Gya): Mu Arae planetary system forms: of four
planets orbiting a yellow star, Mu Arae c is among the first terrestrial
planets to be observed from Earth.

7.8 billion years (6.0 Gya): Formation of Earth’s near twin, Kepler 452b
orbiting its parent star Kepler 452.

7.98 billion years (5.82 Gya): Formation of Mira or Omicron ceti, binary
star system. Formation of Alpha Centauri Star System, closest star to
the Sun - formation of Alpha Centauri Bb closest planet to the Sun. GJ
1214 b, or Gliese 1214 b, potential earth-like planet, forms.

8.08-8.58 billion years (5.718-5.218 Gya): Capella star system forms.
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e 8.2 billion years (5.6 Gya): Tau Ceti, nearby yellow star forms: five planets
eventually evolve from its planetary nebula, orbiting the star - Tau Ceti e
considered planet to have potential life since it orbits the hot inner edge
of the star’s habitable zone.

e 8.5 billion years (5.3 Gya): GRB 101225A, the “Christmas Burst”, con-
sidered the longest at 28 minutes, recorded.

Acceleration

e 8.8 billion years (5 Gya, z=0.5): Acceleration: dark-energy dominated era
begins, following the matter-dominated era during which cosmic expan-
sion was slowing down.

e 8.8 billion years (5 Gya): Messier 67 open star cluster forms: Three
exoplanets confirmed orbiting stars in the cluster including a twin of our
Sun.

e 9.0 billion years (4.8 Gya): Lalande 21185, red dwarf in Ursa Major,
forms.

e 9.13 billion years (4.67 Gya): Proxima Centauri forms completing the
Alpha Centauri trinary system,

Epochs of the formation of the solar system

e 9.2 billion years (4.6-4.57 Gya): Primal supernova, possibly triggers the
formation of the Solar System.

e 9.2318 billion years (4.5682 Gya): Sun forms - Planetary nebula begins
accretion of planets.

e 9.23283 billion years (4.56717-4.55717 Gya): Four Jovian planets (Jupiter,
Saturn, Uranus, Neptune ) evolve around the sun.

e 9.257 billion years (4.543-4.5 Gya): Solar System of Eight planets, four
terrestrial (Mercury (planet), Venus, Earth, Mars) evolve around the sun.
Because of accretion many smaller planets form orbits around the proto-
Sun some with conflicting orbits - Early Bombardment Phase begins. Pre-
cambrian Supereon and Hadean eon begin on the Earth. Pre-Noachian
Era begins on Mars. Pre-Tolstojan Period begins on Mercury - a large
planetoid strikes Mercury stripping it of outer envelope of original crust
and mantle, leaving the planet’s core exposed - Mercury’s iron content
is notably high. Vega, fifth-brightest star in our galactic neighbourhood,
forms. Many of the Galilean moons may have formed at this time includ-
ing Europa and Titan which may presently be hospitable to some form of
living organism.

e 9.266 billion years (4.533 Gya): Formation of Earth-Moon system fol-
lowing giant impact by hypothetical planetoid Theia (planet). Moon’s
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gravitational pull helps stabilize Earth’s fluctuating axis of rotation. Pre-
Nectarian Period begins on Moon.

9.271 billion years (4.529 Gya): Major collision with a pluto-sized plan-
etoid establishes the Martian dichotomy on Mars - formation of North
Polar Basin of Mars.

9.3 billion years (4.5 Gya): Sun becomes a main sequence yellow star:
formation of the Oort Cloud and Kuiper Belt from which a stream of
comets like Halley’s Comet and Hale-Bopp begins passing through the
Solar System, sometimes colliding with planets and the Sun.

9.396 billion years (4.404 Gya): Liquid water may have existed on the
surface of the Earth, probably due to the greenhouse warming of high
levels of methane and carbon dioxide present in the atmosphere.

9.4 billion years (4.4 Gya): Formation of Kepler 438 b, one of the most
Earth-like planets, from a protoplanetary nebula surrounding its parent
star.

9.5 billion years (4.3 Gya): Massive meteorite impact creates South Pole
Aitken Basin on the Moon - a huge chain of mountains located on the
lunar southern limb, sometimes called “Leibnitz mountains”, form.

9.6 billion years (4.2 Gya): Tharsis Bulge widespread area of vulcanism,
becomes active on Mars - based on the intensity of volcanic activity on
Earth, Tharsis magmas may have produced a 1.5-bar CO2 atmosphere
and a global layer of water 120 m deep increasing greenhouse gas effect
in climate and adding to Martian water table. Age of the oldest samples
from the Lunar Maria.

9.7 billion years (4.1 Gya): Resonance in Jupiter and Saturn’s orbits moves
Neptune out into the Kuiper belt causing a disruption among asteroids
and comets there. As a result, Late Heavy Bombardment batters the
inner Solar System. Herschel Crater formed on Mimas (moon), a moon of
Saturn. Meteorite impact creates the Hellas Planitia on Mars, the largest
unambiguous structure on the planet. Anseris Mons an isolated massif
(mountain) in the southern highlands of Mars, located at the northeastern
edge of Hellas Planitia is uplifted in the wake of the meteorite impact.
9.8 billion years (4 Gya): HD 209458 b, first planet detected through its
transit, forms. Messier 85, lenticular galaxy, disrupted by galaxy inter-
action: complex outer structure of shells and ripples results. Andromeda
and Triangulum galaxies experience close encounter - high levels of star
formation in Andromeda while Triangulum’s outer disc is distorted.
9.861 billion years (3.938 Gya): Major period of impacts on the Moon:
Mare Imbrium forms.

9.88 billion years (3.92 Gya): Nectaris Basin forms from large impact
event: ejecta from Nectaris forms upper part of densely cratered Lunar
Highlands - Nectarian Era begins on the Moon.
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9.9 billion years (3.9 Gya): Tolstoj (crater) forms on Mercury. Caloris
Basin forms on Mercury leading to creation of “Weird Terraine” - seis-
mic activity triggers volcanic activity globally on Mercury. Rembrandt
(crater) formed on Mercury. Caloris Period begins on Mercury. Ar-
gyre Planitia forms from asteroid impact on Mars: surrounded by rugged
massifs which form concentric and radial patterns around basin - several
mountain ranges including Charitum and Nereidum Montes are uplifted
in its wake.

e 9.95 billion years (3.85 Gya): Beginning of Late Imbrium Period on Moon.
Earliest appearance of Procellarum KREEP Mg suite materials.

e 9.96 billion years (3.84 Gya): Formation of Orientale Basin from asteroid
impact on Lunar surface - collision causes ripples in crust, resulting in
three concentric circular features known as Montes Rook and Montes
Cordillera.

e 10 billion years (3.8 Gya): In the wake of Late Heavy Bombardment im-
pacts on the Moon, large molten mare depressions dominate lunar surface
- major period of Lunar vulcanism begins (to 3 Gyr). Archean eon begins
on the Earth.

e 10.2 billion years (3.6 Gya): Alba Mons forms on Mars, largest volcano
in terms of area.

e 10.4 billion years (3.5 Gya): Earliest fossil traces of life on Earth (stroma-
tolites).

e 10.6 billion years (3.2 Gya): Amazonian Period begins on Mars: Martian
climate thins to its present density: groundwater stored in upper crust
(megaregolith) begins to freeze, forming thick cryosphere overlying deeper
zone of liquid water - dry ices composed of frozen carbon dioxide form
Eratosthenian period begins on the Moon: main geologic force on the
Moon becomes impact cratering.

e 10.8 billion years (3 Gya): Beethoven Basin forms on Mercury - unlike
many basins of similar size on the Moon, Beethoven is not multi ringed
and ejecta buries crater rim and is barely visible.

e 11.2 billion years (2.5 Gya): Proterozoic begins.

e 11.6 billion years (2.2 Gya): Last great tectonic period in Martian geologic
history: Valles Marineris, largest canyon complex in the Solar System,
forms - although some suggestions of thermokarst activity or even water
erosion, it is suggested Valles Marineris is rift fault.
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Chapter 2

EARLY HISTORY OF THE EARTH

2.1 Formation of the Sun and the Earth

Our local star, the Sun, was formed from molecular clouds in interstellar space, which had
been produced by the explosion of earlier stars. Our Sun contains mainly hydrogen and
a little helium, with very small amounts of heavier elements. The vast amounts of energy
produced by the sun come mainly from a nuclear reaction in which hydrogen is converted
into helium.

There were clouds of containing not only hydrogen and helium, but also heavier elements
left swirling around the infant Sun. Gradually, over many millions of years, these condensed
through a process of collision and accretion, to form the planets. In the four relatively small
inner planets, Mercury, Venus, Earth and Mars, heavy elements predominate, while in the
giants, Jupiter, Saturn, Uranus and Neptune, we find lighter elements.

The Sun accounts for 99.86% of the solar system’s mass, while the four giant planets
contain 99% of the remaining mass.

One astronomical unit (1 AU) is, by definition, the average distance of the earth from
the sun, i.e. approximately 93 million miles or 150 million kilometers. In terms of this
unit, the average distances of the planets from the sun are as follows: Mercury, 0.387 AU,
Venus, 0.722 AU; Earth, 1.000 AU; Mars, 1.52 AU; Jupiter, 5.20 AU; Saturn, 9.58 AU;
Uranus, 19.2 AU; Neptune, 30.1 AU.

The Solar System also includes the asteroid belt, which lies between the orbits of Mars
and Jupiter; the Kuiper belt and scattered disc, which are populations of trans-Neptunian
objects; the dwarf planets, Ceres, Pluto and Eris; and the comets. Many of the bodies
in the solar system, including six of the planets, have natural satellites or moons. The
Earth’s moon was produced by collision with a Mars-sized body, soon after the formation
of the Earth.

Of the four inner planets, the Earth is the only one that has large amounts of liquid
water on its surface. When the Earth cooled sufficiently after the violent collision that gave
us our Moon, oceans began to form, and life is believed to have originated in the oceans,
approximately 3.8 billion years before the present.
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Figure 2.1: Much experimental evidence supports the Standard Model of cos-
mology, according to which our Universe began in an enormously hot and dense
state 15.8 billion years ago, from which it is exploding outward. By 10 billion
years before the present it had cooled enough for the first stars to form. Our
own local star, the Sun, was formed 4.54 billion years ago from dust clouds
left when earlier stars exploded. These dust clouds contained not only large
amounts of hydrogen and a little helium, but also small amounts of the heavy
elements that are needed for life. These heavy elements had been produced by
nuclear reactions in the core regions of earlier stars.
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Figure 2.2: Geologic time represented in a diagram called a geological clock,
showing the relative lengths of the eons of Earth’s history and noting major
events. During the Hadian eon, the earth was extremely hot, because of its
recent accretion, the abundance of short-lived radioactive elements, and fre-
quent collisions with other Solar System bodies. The word Hadian is derived
from the name of the Greek god of the underworld, and it is used to describe
the hellish conditions on the early earth. On the time-scale of this geological
clock, humans appeared at the very last moment.
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Figure 2.3: Artist’s conception of a protoplanetary disc.
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Figure 2.4: Plate tectonics - 249 million years ago. By that time, the earth
had cooled sufficiently for a solid crust to form, but this crust was divided
into fragments called “tectonic plates”. Currents in the molten rock beneath
the plates dragged them into collision with each other, causing volcanism, and
raising mountain ranges from former sea beds.
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Figure 2.5: Plate tectonics- 290 million years ago.
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Figure 2.6: Plate tectonics- 100 Ma, Cretaceous period.
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Figure 2.7: Oceanic-continental convergence resulting in subduction and volcanic
arcs illustrates one effect of plate tectonics.
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Figure 2.8: The major tectonic plates of the Earth. The key principle of plate
tectonics is that the lithosphere exists as separate and distinct tectonic plates,
which float on the fluid-like (visco-elastic solid) asthenosphere. The relative
fluidity of the asthenosphere allows the tectonic plates to undergo motion in
different directions.
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Figure 2.9: The Earth’s layered structure. (1) inner core; (2) outer core; (3)
lower mantle; (4) upper mantle; (5) lithosphere; (6) crust (part of the litho-
sphere). The extreme heat in the core of the earth is caused by the decay of
radioactive elements. As the heat is conducted outward by convection currents,
the currents are acted on by a combination of forces due to the earths rotation,
and forces from the magnetic fields pricuced by the currents themselves. The
resulting magnetic field of the earth as a function of geological time can be
calculated, but it is a complex problem in magneto-hydrodynamics. Similar
considerations hold for the sun’s magnetic field and the sunspot cycle.



2.1. FORMATION OF THE SUN AND THE EARTH 67

History of Earth on a clock...
Humans (Today)

Dinosaurs (.1 BYA)

Colonization of Land (.5 BYA)

Marine invertebrates
evolve (.54 BYA)

Origin of Earth (4.5 BYA)

Multicellular eukaryotic = Eanhicocisth9 IR

life begins in the sea
(1.2 BYA)

il YearsAgo Origin of life (3.8 BYA)

Origin of Prokaryotes (3.5
BYA)

Endosymbiosis creates

eukaryotic Iife (2.1 BYA) Oxygen in atmosphere (2.7 BYA)

Figure 2.10: The Earth was formed 4.54 billion years ago. Life on earth origi-
nated approximately 3.8 billion years ago (3.8 BYA).
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Figure 2.11: This figure shows the relative sizes of the planets. Closest to the Sun
are the relatively small terrestrial planets, Mercury, Venus, Earth and Mars,
composed of metals and rock. Farther out are two gas giants, Jupiter and
Saturn, which are composed mainly of hydrogen and helium. Still farther out
are two ice giants, Uranus and Neptune, which are composed mainly of frozen
water, frozen ammonia and frozen methane. The distances of the planets from
the Sun shown in this figure are not realistic. The planetary orbits lie in roughly
in the same plane, which is called the ecliptic, and all the planets circle the
Sun in the same direction.
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2.2 The history of evolutionary theories

Before discussing modern theories of the origin and evolution of life on Earth, we will the
ides of some early pioneers of this field.

Aristotle, (384 BC - 322 BC)

Aristotle was a very great organizer of knowledge, and his writings almost form a one-man
encyclopedia. His best work was in biology, where he studied and classified more than five
hundred animal species, many of which he also dissected. In Aristotle’s classification of
living things, he shows an awareness of the interrelatedness of species. This interrelatedness
was much later used by Darwin as evidence for the theory of evolution. One cannot really
say that Aristotle developed a theory of evolution, but he was groping towards the idea.
In his history of animals, he writes:

“Nature proceeds little by little from lifeless things to animal life, so that it is impos-
sible to determine either the exact line of demarcation, or on which side of the line an
intermediate form should lie. Thus, next after lifeless things in the upward scale comes the
plant. Of plants, one will differ from another as to its apparent amount of vitality. In a
word, the whole plant kingdom, whilst devoid of life as compared with the animal, is yet
endowed with life as compared with other corporeal entities. Indeed, there is observed in
plants a continuous scale of ascent towards the animal.”

Aristotle’s classification of living things, starting at the bottom of the scale and going
upward, is as follows: Inanimate matter, lower plants and sponges, higher plants, jellyfish,
zoophytes and ascidians, molluscs, insects, jointed shellfish, octopuses and squids, fish
and reptiles, whales, land mammals and man. The acuteness of Aristotle’s observation
and analysis can be seen from the fact that he classified whales and dolphins as mammals
(where they belong) rather than as fish (where they superficially seem to belong, and where
many ancient writers placed them).

Among Aristotle’s biological writings, there appears a statement that clearly foreshad-
ows the principle of natural selection, later independently discovered by Darwin and Wal-
lace and fully developed by Darwin. Aristotle wrote: “Wheresoever, therefore... all parts
of one whole happened like as if they were made for something, these were preserved,
having been appropriately constituted by an internal spontaneity; and wheresoever things
were not thus constituted, they perished, and still perish”.

Averroes

During the Middle Ages, Aristotle’s evolutionary ideas were revived and extended in the
writings of the Islamic philosopher Averr('jesﬂ who lived in Spain from 1126 to 1198. His
writings had a great influence on western thought. Averroes shocked both his Moslem and
his Christian readers by his thoughtful commentaries on the works of Aristotle, in which

L Abul Walid Mahommed Ibn Achmed, Ibn Mahommed Ibn Rosched
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he maintained that the world was not created at a definite instant, but that it instead
evolved over a long period of time, and is still evolving.

Like Aristotle, Averroes seems to have been groping towards the ideas of evolution which
were later developed in geology by Lyell and in biology by Darwin and Wallace. Much of
the scholastic philosophy written at the University of Paris during the 13th century was
aimed at refuting the doctrines of Averroes; but nevertheless, his ideas survived and helped
to shape the modern picture of the world.

The mystery of fossils

During the lifetime of Leonardo da Vinci (1452-1519) the existence of fossil shells in the
rocks of high mountain ranges was recognized and discussed. “...the shells in Lombardy are
at four levels”, Leonardo wrote, “and thus it is everywhere, having been made at various
times...The stratified stones of the mountains are all layers of clay, deposited one above the
other by the various floods of the rivers.” Leonardo had no patience with the explanation
given by some of his contemporaries, that the shells had been carried to mountain tops by
the deluge described in the Bible. “If the shells had been carried by the muddy waters of
the deluge”, he wrote, “they would have been mixed up, and separated from each other
amidst the mud, and not in regular steps and layers.” Nor did Leonardo agree with the
opinion that the shells somehow grew within the rocks: “Such an opinion cannot exist in
a brain of much reason”, he wrote, “because here are the years of their growth, numbered
on their shells, and there are large and small ones to be seen, which could not have grown
without food, and could not have fed without motion...and here they could not move.”

Leonardo believed that the fossil shells were once part of living organisms, that they
were buried in strata under water, and much later lifted to the tops of mountains by
geological upheavals. However his acute observations had little influence on the opinions
of his contemporaries because they appear among the 4000 or so pages of notes which he
wrote for himself but never published.

It was left to the Danish scientist Niels Stensen (1638-1686) (usually known by his
Latinized name, Steno) to independently rediscover and popularize the correct interpre-
tation of fossils and of rock strata. Steno, who had studied medicine at the University
of Leiden, was working in Florence, where his anatomical studies attracted the attention
of the Grand Duke of Tuscany, Ferdinand II. When an enormous shark was caught by
local fishermen, the Duke ordered that its head be brought to Steno for dissection. The
Danish anatomist was struck by shape of the shark’s teeth, which reminded him of certain
curiously shaped stones called glossopetrae that were sometimes found embedded in larger
rocks. Steno concluded that the similarity of form was not just a coincidence, and that
the glossopetrae were in fact the teeth of once-living sharks which had become embedded
in the muddy sediments at the bottom of the sea and gradually changed to stone. Steno
used the corpuscular theory of matter, a forerunner of atomic theory, to explain how the
composition of the fossils could have changed while their form remained constant. Steno
also formulated a law of strata, which states that in the deposition of layers of sediment,
later converted to rock, the oldest layers are at the bottom.
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In England, the brilliant and versatile experimental scientist Robert Hooke (1635-1703)
added to Steno’s correct interpretation of fossils by noticing that some fossil species are not
represented by any living counterparts. He concluded that “there have been many other
Species of Creatures in former Ages, of which we can find none at present; and that ’tis
not unlikely also but that there may be divers new kinds now, which have not been from
the beginning.”

Similar observations were made by the French naturalist, Georges-Louis Leclerc, Comte
de Buffon (1707-1788), who wrote: “We have monuments taken from the bosom of the
Earth, especially from the bottom of coal and slate mines, that demonstrate to us that
some of the fish and plants that these materials contain do not belong to species currently
existing.” Buffon’s position as keeper of the Jardin du Roi, the French botanical gardens,
allowed him time for writing, and while holding this post he produced a 44-volume ency-
clopedia of natural history. In this enormous, clearly written, and popular work, Buffon
challenged the theological doctrines which maintained that all species were created in-
dependently, simultaneously and miraculously, 6000 years ago. As evidence that species
change, Buffon pointed to vestigial organs, such as the lateral toes of the pig, which may
have had a use for the ancestors of the pig. He thought that the donkey might be a de-
generate relative of the horse. Buffon believed the earth to be much older than the 6000
years allowed by the Bible, but his estimate, 75,000 years, greatly underestimated the true
age of the earth.

The great Scottish geologist James Hutton (1726-1797) had a far more realistic picture
of the true age of the earth. Hutton observed that some rocks seemed to have been produced
by the compression of sediments laid down under water, while other rocks appeared to have
hardened after previous melting. Thus he classified rocks as being either igneous or else
sedimentary. He believed the features of the earth to have been produced by the slow
action of wind, rain, earthquakes and other forces which can be observed today, and that
these forces never acted with greater speed than they do now. This implied that the earth
must be immensely old, and Hutton thought its age to be almost infinite. He believed that
the forces which turned sea beds into mountain ranges drew their energy from the heat of
the earth’s molten core. Together with Steno, Hutton is considered to be one of the fathers
of modern geology. His uniformitarian principles, and his belief in the great age of the
earth were later given wide circulation by Charles Darwin’s friend and mentor, Sir Charles
Lyell (1797-1875), and they paved the way for Darwin’s application of uniformitarianism to
biology. At the time of his death, Hutton was working on a theory of biological evolution
through natural selection, but his manuscripts on this subject remained unknown until
1946

Linnaeus, Lamarck and Erasmus Darwin

During the 17th and 18th centuries, naturalists had been gathering information on thou-
sands of species of plants and animals. This huge, undigested heap of information was
put into some order by the great Swedish naturalist, Carl von Linné (1707-1778), who is
usually called by his Latin name, Carolus Linnaeus.
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Linnaeus reclassified all living things, and he introduced a binomial nomenclature, so
that each plant or animal became known by two names - the name of its genus, and the
name of its species. In the classification of Linnaeus, the species within a given genus
resemble each other very closely. Linnaeus also grouped related genera into classes, and
related classes into orders. Later, the French anatomist, Cuvier (1769-1832), grouped
related orders into phyla.

In France, the Chevalier J.B. de Lamarck (1744-1829), was struck by the close relation-
ships between various animal species; and in 1809 he published a book entitled Philosophie
Zoologique, in which he tried to explain this interrelatedness in terms of a theory of evo-
lution. Lamarck explained the close similarity of the species within a genus by supposing
these species to have evolved from a common ancestor. However, the mechanism of evolu-
tion which he postulated was seriously wrong, since he believed that acquired characteristics
could be inherited.

Lamarck believed, for example, that giraffes stretched their necks slightly by reaching
upward to eat the leaves of high trees. He believed that these slightly-stretched necks
could be inherited; and in this way, Lamarck thought, the necks of giraffes have gradually
become longer over many generations. Although his belief in the inheritability of acquired
characteristics was a serious mistake, Lamarck deserves much credit for correctly main-
taining that the close similarity between the species of a genus is due to their descent from
a common ancestral species.

Meanwhile, in England, the brilliant physician-poet, Erasmus Darwin (1731-1802), who
was considered by Coleridge to have “...a greater range of knowledge than any other man
in Europe”, had published The Botanic Garden and Zoonomia (1794). Darwin’s first book,
The Botanic Garden, was written in verse, and in the preface he stated that his purpose
was “...to inlist imagination under the banner of science..” and to call the reader’s attention
to “the immortal works of the celebrated Swedish naturalist, Linnaeus”. This book was
immensely popular during Darwin’s lifetime, but modern readers might find themselves
wishing that he had used prose instead of poetry.

Darwin’s second book, Zoonomia, is more interesting, since it contains a clear statement
of the theory of evolution:

“...When we think over the great changes introduced into various animals”, Darwin
wrote, “as in horses, which we have exercised for different purposes of strength and swift-
ness, carrying burthens or in running races; or in dogs, which have been cultivated for
strength and courage, as the bull-dog; or for acuteness of his sense of smell, as in the
hound and spaniel; or for the swiftness of his feet, as the greyhound; or for his swimming
in the water, or for drawing snow-sledges, as the rough-haired dogs of the north... and
add to these the great change of shape and colour which we daily see produced in smaller
animals from our domestication of them, as rabbits or pigeons;... when we revolve in our
minds the great similarity of structure which obtains in all the warm-blooded animals, as
well as quadrupeds, birds and amphibious animals, as in mankind, from the mouse and the
bat to the elephant and whale; we are led to conclude that they have alike been produced
from a similar living filament.”

Erasmus Darwin’s son, Robert, married Suzannah Wedgwood, the pretty and talented
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daughter of the famous potter, Josiah Wedgwood; and in 1809, (the same year in which
Lamarck published his Philosophie Zoologique), she became the mother of Charles Darwin.

Charles Darwin

As a boy, Charles Darwin was fond of collecting and hunting, but he showed no special
ability in school. His father, disappointed by his mediocre performance, once said to him:
“You care for nothing but shooting, dogs and rat-catching; and you will be a disgrace to
yourself, and to all your family.”

Robert Darwin was determined that his son should not turn into an idle, sporting man,
as he seemed to be doing, and when Charles was sixteen, he was sent to the University of
Edinburgh to study medicine. However, Charles Darwin had such a sensitive and gentle
disposition that he could not stand to see operations (performed, in those days, without
chloroform). Besides, he had found out that his father planned to leave him enough money
to live on comfortably; and consequently he didn’t take his medical studies very seriously.
However, some of his friends were scientists,and through them, Darwin became interested
in geology and zoology.

Robert Darwin realized that his son did not want to become a physician, and, as an
alternative, he sent Charles to Cambridge to prepare for the clergy. At Cambridge, Charles
Darwin was very popular because of his cheerful, kind and honest character; but he was
not a very serious student. Among his many friends, however, there were a few scientists,
and they had a strong influence on him. The most important of Darwin’s scientific friends
were John Stevens Henslow, the Professor of Botany at Cambridge, and Adam Sedgwick,
the Professor of Geology.

Remembering the things which influenced him at that time, Darwin wrote:

“During my last year at Cambridge, I read with care and profound interest Humboldt’s
Personal Narrative of Travels to the Equinoctial Regions of America. This work, and Sir J.
Herschel’s Introduction to the Study of Natural Philosophy, stirred up in me a burning desire
to add even the most humble contribution to the noble structure of Natural Science. No
one of a dozen books influenced me nearly so much as these. I copied out from Humboldt
long passages about Teneriffe, and read them aloud to Henslow, Ramsay and Dawes...
and some of the party declared that they would endeavour to go there; but I think they
were only half in earnest. I was, however, quite in earnest, and got an introduction to a
merchant in London to enquire about ships.”

During the summer of 1831, Charles Darwin went to Wales to help Professor Sedgwick,
who was studying the extremely ancient rock formations found there. When he returned
to his father’s house after this geological expedition, he found a letter from Henslow. This
letter offered Darwin the post of unpaid naturalist on the Beagle, a small brig which was
being sent by the British government to survey the coast of South America and to carry a
chain of chronological measurements around the world.

Darwin was delighted and thrilled by this offer. He had a burning desire both to visit
the glorious, almost-unknown regions described by his hero, Alexander von Humboldt,
and to “add even the most humble contribution to the noble structure of Natural Science”.
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Figure 2.12: Erasmus Darwin (1731-1802), the grandfather of Charles Darwin,
proposed a theory of evolution, but did not support it with enough experimen-
tal evidence to satisfy the naturalists of the time.

Figure 2.13: Charles Darwin (1809-1882) as an old man,
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His hopes and plans were blocked, however, by the opposition of his father, who felt that
Charles was once again changing his vocation and drifting towards a life of sport and
idleness. “If you can find any man of common sense who advises you to go”, Robert
Darwin told his son, “I will give my consent”.

Deeply depressed by his father’s words, Charles Darwin went to visit the estate of his
uncle, Josiah Wedgwood, at Maer, where he always felt more comfortable than he did at
home. In Darwin’s words what happened next was the following:

“...My uncle sent for me, offering to drive me over to Shrewsbury and talk with my
father, as my uncle thought that it would be wise in me to accept the offer. My father
always maintained that my uncle was one of the most sensible men in the world, and he
at once consented in the kindest possible manner. I had been rather extravagant while at
Cambridge, and to console my father, I said that ‘I should be deuced clever to spend more
than my allowance whilst on board the Beagle’, but he answered with a smile, ‘But they
tell me you are very clever!’.”

Thus, on December 27, 1831, Charles Darwin started on a five-year voyage around
the world. Not only was this voyage destined to change Darwin’s life, but also, more
importantly, it was destined to change man’s view of his place in nature.

Lyell’s hypothesis

As the Beagle sailed out of Devonport in gloomy winter weather, Darwin lay in his ham-
mock, 22 years old, miserably seasick and homesick, knowing that he would not see his
family and friends for many years. To take his mind away from his troubles, Darwin read
a new book, which Henslow had recommended: Sir Charles Lyell’s Principles of Geology.
“Read it by all means”, Henslow had written, “for it is very interesting; but do not pay
any attention to it except in regard to facts, for it is altogether wild as far as theory goes.”

Reading Lyell’s book with increasing excitement and absorption, Darwin could easily
see what Henslow found objectionable: Lyell, a follower of the great Scottish geologist,
James Hutton (1726-1797), introduced a revolutionary hypothesis into geology. According
to Lyell, “No causes whatever have, from the earliest times to which we can look back, to
the present, ever acted, but those now acting; and they have never acted with different
degrees of energy from those which they now exert”.

This idea seemed dangerous and heretical to deeply religious men like Henslow and
Sedgwick. They believed that the earth’s geology had been shaped by Noah’s flood, and
perhaps by other floods and catastrophes which had occurred before the time of Noah.
The great geological features of the earth, its mountains, valleys and planes, they viewed
as marks left behind by the various catastrophes through which the earth had passed.

All this was now denied by Lyell. He believed the earth to be enormously old - thousands
of millions of years old. Over this vast period of time, Lyell believed, the long-continued
action of slow forces had produced the geological features of the earth. Great valleys had
been carved out by glaciers and by the slow action of rain and frost; and gradual changes
in the level of the land, continued over enormous periods of time, had built up towering
mountain ranges.
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Lyell’s belief in the immense age of the earth, based on geological evidence, made
the evolutionary theories of Darwin’s grandfather suddenly seem more plausible. Given
such vast quantities of time, the long-continued action of small forces might produce great
changes in biology as well as in geology!

By the time the Beagle had reached San Thiago in the Cape Verde Islands, Darwin had
thoroughly digested Lyell’s book, with its dizzying prospects. Looking at the geology of
San Thiago, he realized “the wonderful superiority of Lyell’s manner of treating geology”.
Features of the island which would have been incomprehensible on the basis of the usual
Catastrophist theories were clearly understandable on the basis of Lyell’s hypothesis.

As the Beagle slowly made its way southward along the South American coast, Darwin
went on several expeditions to explore the interior. On one of these trips, he discovered
some fossil bones in the red mud of a river bed. He carefully excavated the area around
them, and found the remains of nine huge extinct quadrupeds. Some of them were as large
as elephants, and yet in structure they seemed closely related to living South American
species. For example, one of the extinct animals which Darwin discovered resembled an
armadillo except for its gigantic size.

The Beagle rounded Cape Horn, lashed by freezing waves so huge that it almost floun-
dered. After the storm, when the brig was anchored safely in the channel of Tierra del
Fuego, Darwin noticed how a Fuegan woman stood for hours and watched the ship, while
sleet fell and melted on her naked breast, and on the new-born baby she was nursing. He
was struck by the remarkable degree to which the Fuegans had adapted to their frigid
environment, so that they were able to survive with almost no shelter, and with no clothes
except a few stiff animal skins, which hardly covered them, in weather which would have
killed ordinary people.

In 1835, as the Beagle made its way slowly northward, Darwin had many chances
to explore the Chilean coast - a spectacularly beautiful country, shadowed by towering
ranges of the Andes. One day, near Concepcion Bay, he experienced the shocks of a severe
earthquake.

“It came on suddenly, and lasted two minutes”, Darwin wrote, “The town of Concepcion
is now nothing more than piles and lines of bricks, tiles and timbers.”

Measurements which Darwin made showed him that the shoreline near Concepcion had
risen at least three feet during the quake; and thirty miles away, Fitzroy, the captain of
the Beagle, discovered banks of mussels ten feet above the new high-water mark. This was
dramatic confirmation of Lyell’s theories! After having seen how much the level of the
land was changed by a single earthquake, it was easy for Darwin to imagine that similar
events, in the course of many millions of years, could have raised the huge wall of the Andes
mountains.

In September, 1835, the Beagle sailed westward to the Galapagos Islands, a group of
small rocky volcanic islands off the coast of Peru. On these islands, Darwin found new
species of plants and animals which did not exist anywhere else in the world. In fact, he
discovered that each of the islands had its own species, similar to the species found on the
other islands, but different enough to be classified separately.

The Galapagos Islands contained thirteen species of finches, found nowhere else in the
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world, all basically alike in appearance, but differing in certain features especially related to
their habits and diet. As he turned these facts over in his mind, it seemed to Darwin that
the only explanation was that the thirteen species of Galapagos finches were descended
from a single species, a few members of which had been carried to the islands by strong
winds blowing from the South American mainland.

“Seeing this gradation and diversity of structure in one small, intimately related group
of birds”, Darwin wrote, “one might really fancy that from an original paucity of birds in
this archipelago, one species had been taken and modified for different ends... Facts such
as these might well undermine the stability of species.”

As Darwin closely examined the plants and animals of the Galapagos Islands, he could
see that although they were not quite the same as the corresponding South American
species, they were so strongly similar that it seemed most likely that all the Galapagos
plants and animals had reached the islands from the South American mainland, and had
since been modified to their present form.

The idea of the gradual modification of species could also explain the fact, observed by
Darwin, that the fossil animals of South America were more closely related to African and
Eurasian animals than were the living South American species. In other words, the fossil
animals of South America formed a link between the living South American species and
the corresponding animals of Europe, Asia and Africa. The most likely explanation for
this was that the animals had crossed to America on a land bridge which had since been
lost, and that they had afterwards been modified.

The Beagle continued its voyage westward, and Darwin had a chance to study the
plants and animals of the Pacific Islands. He noticed that there were no mammals on these
islands, except bats and a few mammals brought by sailors. It seemed likely to Darwin
that all the species of the Pacific Islands had reached them by crossing large stretches
of water after the volcanic islands had risen from the ocean floor; and this accounted for
the fact that so many classes were missing. The fact that each group of islands had its
own particular species, found nowhere else in the world, seemed to Darwin to be strong
evidence that the species had been modified after their arrival. The strange marsupials of
the isolated Australian continent also made a deep impression on Darwin.

The Origin of Species

Darwin had left England on the Beagle in 1831, an immature young man of 22, with no
real idea of what he wanted to do with his life. He returned from the five-year voyage in
1836, a mature man, confirmed in his dedication to science, and with formidable powers
of observation, deduction and generalization. Writing of the voyage, Darwin says:

“I have always felt that I owe to the voyage the first real education of my mind...
Everything about which I thought or read was made to bear directly on what I had seen,
or was likely to see, and this habit was continued during the five years of the voyage. I feel
sure that it was this training which has enabled me to do whatever I have done in science.”

Darwin returned to England convinced by what he had seen on the voyage that plant
and animal species had not been independently and miraculously created, but that they
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had been gradually modified to their present form over millions of years of geological time.

Darwin was delighted to be home and to see his family and friends once again. To his
uncle, Josiah Wedgwood, he wrote:

“My head is quite confused from so much delight, but I cannot allow my sister to tell
you first how happy I am to see all my dear friends again... I am most anxious once again
to see Maer and all its inhabitants.”

In a letter to Henslow, he said:

“My dear Henslow, I do long to see you. You have been the kindest friend to me that
ever man possessed. I can write no more, for I am giddy with joy and confusion.”

In 1837, Darwin took lodgings at Great Marlborough Street in London, where he could
work on his geological and fossil collections. He was helped in his work by Sir Charles Lyell,
who became Darwin’s close friend. In 1837 Darwin also began a notebook on Transmutation
of Species. His Journal of researches into the geology and natural history of the various
countries visited by the H.M.S. Beagle was published in 1839, and it quickly became a best-
seller. It is one of the most interesting travel books ever written, and since its publication
it has been reissued more than a hundred times.

These were very productive years for Darwin, but he was homesick, both for his father’s
home at the Mount and for his uncle’s nearby estate at Maer, with its galaxy of attractive
daughters. Remembering his many happy visits to Maer, he wrote:

“In the summer, the whole family used often to sit on the steps of the old portico, with
the flower-garden in front, and with the steep, wooded bank opposite the house reflected
in the lake, with here and there a fish rising, or a water-bird paddling about. Nothing has
left a more vivid picture in my mind than these evenings at Maer.”

In the summer of 1838, tired of his bachelor life in London, Darwin wrote in his diary:

“My God, it is intolerable to think of spending one’s whole life like a neuter bee,
working, working, and nothing after alll Imagine living all one’s days in smoky, dirty
London! Only picture to yourself a nice soft wife on a sofa with a good fire, and books and
music perhaps.. Marry! Marry! Marry! Q.E.D.”

Having made this decision, Darwin went straight to Maer and proposed to his pretty
cousin, Emma Wedgwood, who accepted him at once, to the joy of both families. Charles
and Emma Darwin bought a large and pleasant country house at Down, fifteen miles south
of London; and there, in December, 1839, the first of their ten children was born.

Darwin chose this somewhat isolated place for his home because he was beginning to
show signs of a chronic illness, from which he suffered for the rest of his life. His strength
was very limited, and he saved it for his work by avoiding social obligations. His illness was
never accurately diagnosed during his own lifetime, but the best guess of modern doctors
is that he had Chagas’ disease, a trypanasome infection transmitted by the bite of a South
American blood-sucking bug.

Darwin was already convinced that species had changed over long periods of time, but
what were the forces which caused this change? In 1838 he found the answer:

“I happened to read for amusement Malthus on Population”, he wrote, “and being
well prepared to appreciate the struggle for existence which everywhere goes on from long-
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continued observation of the habits of animals and plants, it at once struck me that under
these circumstances favorable variations would tend to be preserved, and unfavorable ones
destroyed. The result would be the formation of new species”

“Here, then, I had at last got a theory by which to work; but I was so anxious to avoid
prejudice that I determined not for some time to write down even the briefest sketch of it.
In June, 1842, T first allowed myself the satisfaction of writing a very brief abstract of my
theory in pencil in 33 pages; and this was enlarged during the summer of 1844 into one of
230 pages”.

All of Darwin’s revolutionary ideas were contained in the 1844 abstract, but he did not
publish it! Instead, in an incredible Copernicus-like procrastination, he began a massive
treatise on barnacles, which took him eight years to finish! Probably Darwin had a premo-
nition of the furious storm of hatred and bigotry which would be caused by the publication
of his heretical ideas.

Finally, in 1854, he wrote to his friend, Sir Joseph Hooker (the director of Kew Botanical
Gardens), to say that he was at last resuming his work on the origin of species. Both Hooker
and Lyell knew of Darwin’s work on evolution, and for many years they had been urging
him to publish it. By 1835, he had written eleven chapters of a book on the origin of
species through natural selection; but he had begun writing on such a vast scale that the
book might have run to four or five heavy volumes, which could have taken Darwin the
rest of his life to complete.

Fortunately, this was prevented by the arrival at Down House of a bombshell in the
form of a letter from a young naturalist named Alfred Russell Wallace. Like Darwin,
Wallace had read Malthus’ book On Population, and in a flash of insight during a period
of fever in Malaya, he had arrived at a theory of evolution through natural selection which
was precisely the same as the theory on which Darwin had been working for twenty years!
Wallace enclosed with his letter a short paper entitled On the Tendency of Varieties to
Depart Indefinitely From the Original Type. It was a perfect summary of Darwin’s theory
of evolution!

“I never saw a more striking coincidence”, the stunned Darwin wrote to Lyell, “If
Wallace had my MS. sketch, written in 1842, he could not have made a better short
abstract! Even his terms now stand as heads of my chapters... I should be extremely glad
now to publish a sketch of my general views in about a dozen pages or so; but I cannot
persuade myself that I can do so honourably... I would far rather burn my whole book
than that he or any other man should think that I have behaved in a paltry spirit.”

Both Lyell and Hooker acted quickly and firmly to prevent Darwin from suppressing
his own work, as he was inclined to do. In the end, they found a happy solution: Wallace’s
paper was read to the Linnean Society together with a short abstract of Darwin’s work, and
the two papers were published together in the proceedings of the society. The members
of the Society listened in stunned silence. As Hooker wrote to Darwin the next day,
the subject was “too novel and too ominous for the old school to enter the lists before
armouring.”

Lyell and Hooker then persuaded Darwin to write a book of moderate size on evolution
through natural selection. As a result, in 1859, he published The Origin of Species, which
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ranks, together with Newton’s Principia as one of the two greatest scientific books of
all time. What Newton did for physics, Darwin did for biology: He discovered the basic
theoretical principle which brings together all the experimentally-observed facts and makes
them comprehensible; and he showed in detail how this basic principle can account for the
facts in a very large number of applications.

2.3 Modern theories of the origin of life

Molecular biology

Charles Darwin postulated that natural selection acts on small inheritable variations in the
individual members of a species. His opponents objected that these slight variations would
be averaged away by interbreeding. Darwin groped after an answer to this objection, but
he did not have one. However, unknown to Darwin, the answer had been uncovered several
years earlier by an obscure Augustinian monk, Gregor Mendel, who was born in Silesia in
1822, and who died in Bohemia in 1884.

Mendel loved both botany and mathematics, and he combined these two interests in his
hobby of breeding peas in the monastery garden. Mendel carefully self-pollinated his pea
plants, and then wrapped the flowers to prevent pollination by insects. He kept records of
the characteristics of the plants and their offspring, and he found that dwarf peas always
breed true - they invariably produce other dwarf plants. The tall variety of pea plants,
pollinated with themselves, did not always breed true, but Mendel succeeded in isolating
a strain of true-breeding tall plants which he inbred over many generations.

Next he crossed his true-breeding tall plants with the dwarf variety and produced a
generation of hybrids. All of the hybrids produced in this way were tall. Finally Mendel
self-pollinated the hybrids and recorded the characteristics of the next generation. Roughly
one quarter of the plants in this new generation were true-breeding tall plants, one quarter
were true-breeding dwarfs, and one half were tall but not true-breeding.

Gregor Mendel had in fact discovered the existence of dominant and recessive genes. In
peas, dwarfism is a recessive characteristic, while tallness is dominant. Each plant has two
sets of genes, one from each parent. Whenever the gene for tallness is present, the plant
is tall, regardless of whether it also has a gene for dwarfism. When Mendel crossed the
pure-breeding dwarf plants with pure-breeding tall ones, the hybrids received one type of
gene from each parent. Each hybrid had a tall gene and a dwarf gene; but the tall gene was
dominant, and therefore all the hybrids were tall. When the hybrids were self-pollinated
or crossed with each other, a genetic lottery took place. In the next generation, through
the laws of chance, a quarter of the plants had two dwarf genes, a quarter had two tall
genes, and half had one of each kind.

Mendel published his results in the Transactions of the Brinn Natural History Society
in 1865, and no one noticed his paper] At that time, Austria was being overrun by the

2 Mendel sent a copy of his paper to Darwin; but Darwin, whose German was weak, seems not to have
read it.
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Prussians, and people had other things to think about. Mendel was elected Abbot of his
monastery; he grew too old and fat to bend over and cultivate his pea plants; his work on
heredity was completely forgotten, and he died never knowing that he would one day be
considered to be the founder of modern genetics.

In 1900 the Dutch botanist named Hugo de Vries, working on evening primroses, inde-
pendently rediscovered Mendel’s laws. Before publishing, he looked through the literature
to see whether anyone else had worked on the subject, and to his amazement he found
that Mendel had anticipated his great discovery by 35 years. De Vries could easily have
published his own work without mentioning Mendel, but his honesty was such that he
gave Mendel full credit and mentioned his own work only as a confirmation of Mendel’s
laws. Astonishingly, the same story was twice repeated elsewhere in Europe during the
same year. In 1900, two other botanists (Correns in Berlin and Tschermak in Vienna)
independently rediscovered Mendel’s laws, looked through the literature, found Mendel’s
1865 paper, and gave him full credit for the discovery.

Besides rediscovering the Mendelian laws for the inheritance of dominant and recessive
characteristics, de Vries made another very important discovery: He discovered genetic
mutations - sudden unexplained changes of form which can be inherited by subsequent
generations. In growing evening primroses, de Vries found that sometimes, but very rarely,
a completely new variety would suddenly appear, and he found that the variation could
be propagated to the following generations. Actually, mutations had been observed before
the time of de Vries. For example, a short-legged mutant sheep had suddenly appeared
during the 18th century; and stock-breeders had taken advantage of this mutation to breed
sheep that could not jump over walls. However, de Vries was the first scientist to study
and describe mutations. He noticed that most mutations are harmful, but that a very few
are beneficial, and those few tend in nature to be propagated to future generations.

After the rediscovery of Mendel’s work by de Vries, many scientists began to suspect
that chromosomes might be the carriers of genetic information. The word “chromosome”
had been invented by the German physiologist, Walther Flemming, to describe the long,
threadlike bodies which could be seen when cells were stained and examined through,
the microscope during the process of division. It had been found that when an ordinary
cell divides, the chromosomes also divide, so that each daughter cell has a full set of
chromosomes.

The Belgian cytologist, Edouard van Benedin, had shown that in the formation of sperm
and egg cells, the sperm and egg receive only half of the full number of chromosomes. It
had been found that when the sperm of the father combines with the egg of the mother
in sexual reproduction, the fertilized egg again has a full set of chromosomes, half coming
from the mother and half from the father. This was so consistent with the genetic lottery
studied by Mendel, de Vries and others, that it seemed almost certain that chromosomes
were the carriers of genetic information.

The number of chromosomes was observed to be small (for example, each normal cell of a
human has 46 chromosomes); and this made it obvious that each chromosome must contain
thousands of genes. It seemed likely that all of the genes on a particular chromosome
would stay together as they passed through the genetic lottery; and therefore certain
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characteristics should always be inherited together.

This problem had been taken up by Thomas Hunt Morgan, a professor of experimen-
tal zoology working at Colombia University. He found it convenient to work with fruit
flies, since they breed with lightning-like speed and since they have only four pairs of
chromosomes.

Morgan found that he could raise enormous numbers of these tiny insects with almost
no effort by keeping them in gauze-covered glass milk bottles, in the bottom of which he
placed mashed bananas. In 1910, Morgan found a mutant white-eyed male fly in one of
his milk-bottle incubators. He bred this fly with a normal red-eyed female, and produced
hundreds of red-eyed hybrids. When he crossed the red-eyed hybrids with each other, half
of the next generation were red-eyed females, a quarter were red-eyed males, and a quarter
were white-eyed males. There was not one single white-eyed female! This indicated that
the mutant gene for white eyes was on the same chromosome as the gene for the male sex.

As Morgan continued his studies of genetic linkages, however, it became clear that the
linkages were not absolute. There was a tendency for all the genes on the same chromosome
to be inherited together; but on rare occasions there were “crosses”, where apparently a
pair of chromosomes broke at some point and exchanged segments. By studying these
crosses statistically, Morgan and his “fly squad” were able to find the relative positions of
genes on the chromosomes. They reasoned that the probability for a cross to separate two
genes should be proportional to the distance between the two genes on the chromosome.
In this way, after 17 years of work and millions of fruit flies, Thomas Hunt Morgan and
his coworkers were able to make maps of the fruit fly chromosomes showing the positions
of the genes.

This work had been taken a step further by Hermann J. Muller, a member of Morgan’s
“fly squad”, who exposed hundreds of fruit flies to X-rays. The result was a spectacular
outbreak of man-made mutations in the next generation.

“They were a motley throng”, recalled Muller. Some of the mutant flies had almost
no wings, others bulging eyes, and still others brown, yellow or purple eyes; some had no
bristles, and others curly bristles. Muller’s experiments indicated that mutations can be
produced by radiation-induced physical damage; and he guessed that such damage alters
the chemical structure of genes.

In spite of the brilliant work by Morgan and his collaborators, no one had any idea of
what a gene really was.

The structure of DNA

Until 1944, most scientists had guessed that the genetic message was carried by the proteins
of the chromosome. In 1944, however, O.T. Avery and his co-workers at the laboratory of
the Rockefeller Institute in New York performed a critical experiment, which proved that
the material which carries genetic information is not protein, but deoxyribonucleic acid
(DNA) - a giant chainlike molecule which had been isolated from cell nuclei by the Swiss
chemist, Friedrich Miescher.
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Avery had been studying two different strains of pneumococci, the bacteria which cause
pneumonia. One of these strains, the S-type, had a smooth coat, while the other strain,
the R-type, lacked an enzyme needed for the manufacture of a smooth carbohydrate coat.
Hence, R-type pneumococci had a rough appearance under the microscope. Avery and his
co-workers were able to show that an extract from heat-killed S-type pneumococci could
convert the living R-type species permanently into S-type; and they also showed that this
extract consisted of pure DNA.

In 1947, the Austrian-American biochemist, Erwin Chargaff, began to study the long,
chainlike DNA molecules. It had already been shown by Levine and Todd that chains of
DNA are built up of four bases: adenine (A), thymine (T), guanine (G) and cytosine (C),
held together by a sugar-phosphate backbone. Chargaff discovered that in DNA from the
nuclei of living cells, the amount of A always equals the amount of T; and the amount of
G always equals the amount of C.

When Chargaff made this discovery, neither he nor anyone else understood its meaning.
However, in 1953, the mystery was completely solved by Rosalind Franklin and Maurice
Wilkins at Kings College, London, together with James Watson and Francis Crick at
Cambridge University. By means of X-ray diffraction techniques, Wilkins and Franklin
obtained crystallographic information about the structure of DNA. Using this informa-
tion, together with Linus Pauling’s model-building methods, Crick and Watson proposed
a detailed structure for the giant DNA molecule.

The discovery of the molecular structure of DNA was an event of enormous importance
for genetics, and for biology in general. The structure was a revelation! The giant, helical
DNA molecule was like a twisted ladder: Two long, twisted sugar-phosphate backbones
formed the outside of the ladder, while the rungs were formed by the base pairs, A, T, G
and C. The base adenine (A) could only be paired with thymine (T), while guanine (G) fit
only with cytosine (C). Each base pair was weakly joined in the center by hydrogen bonds
- in other words, there was a weak point in the center of each rung of the ladder - but the
bases were strongly attached to the sugar-phosphate backbone. In their 1953 paper, Crick
and Watson wrote:

"It has not escaped our notice that the specific pairing we have postulated suggests a
possible copying mechanism for genetic material”. Indeed, a sudden blaze of understanding
illuminated the inner workings of heredity, and of life itself.

If the weak hydrogen bonds in the center of each rung were broken, the ladderlike DNA
macromolecule could split down the center and divide into two single strands. Each single
strand would then become a template for the formation of a new double-stranded molecule.

Because of the specific pairing of the bases in the Watson-Crick model of DNA| the two
strands had to be complementary. T had to be paired with A, and G with C. Therefore, if
the sequence of bases on one strand was (for example) TTTGCTAAAGGTGAACCA... |
then the other strand necessarily had to have the sequence AAACGATTTCCACTTGGT...
The Watson-Crick model of DNA made it seem certain that all the genetic information
needed for producing a new individual is coded into the long, thin, double-stranded DNA
molecule of the cell nucleus, written in a four-letter language whose letters are the bases,
adenine, thymine, guanine and cytosine.
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The solution of the DNA structure in 1953 initiated a new kind of biology - molecular
biology. This new discipline made use of recently-discovered physical techniques - X-
ray diffraction, electron microscopy, electrophoresis, chromatography, ultracentrifugation,
radioactive tracer techniques, autoradiography, electron spin resonance, nuclear magnetic
resonance and ultraviolet spectroscopy. In the 1960’s and 1970’s, molecular biology became
the most exciting and rapidly-growing branch of science.

Protein structure

In England, J.D. Bernal and Dorothy Crowfoot Hodgkin pioneered the application of X-
ray diffraction methods to the study of complex biological molecules. In 1949, Hodgkin
determined the structure of penicillin; and in 1955, she followed this with the structure
of vitamin B12. In 1960, Max Perutz and John C. Kendrew obtained the structures of
the blood proteins myoglobin and hemoglobin. This was an impressive achievement for
the Cambridge crystallographers, since the hemoglobin molecule contains roughly 12,000
atoms.

The structure obtained by Perutz and Kendrew showed that hemoglobin is a long chain
of amino acids, folded into a globular shape, like a small, crumpled ball of yarn. They found
that the amino acids with an affinity for water were on the outside of the globular molecule;
while the amino acids for which contact with water was energetically unfavorable were
hidden on the inside. Perutz and Kendrew deduced that the conformation of the protein
- the way in which the chain of amino acids folded into a 3-dimensional structure - was
determined by the sequence of amino acids in the chain.

In 1966, D.C. Phillips and his co-workers at the Royal Institution in London found
the crystallographic structure of the enzyme lysozyme (an egg-white protein which breaks
down the cell walls of certain bacteria). Again, the structure showed a long chain of amino
acids, folded into a roughly globular shape. The amino acids with hydrophilic groups were
on the outside, in contact with water, while those with hydrophobic groups were on the
inside. The structure of lysozyme exhibited clearly an active site, where sugar molecules
of bacterial cell walls were drawn into a mouth-like opening and stressed by electrostatic
forces, so that bonds between the sugars could easily be broken.

Meanwhile, at Cambridge University, Frederick Sanger developed methods for finding
the exact sequence of amino acids in a protein chain. In 1945, he discovered a compound
(2,4-dinitrofluorobenzene) which attaches itself preferentially to one end of a chain of amino
acids. Sanger then broke down the chain into individual amino acids, and determined which
of them was connected to his reagent. By applying this procedure many times to fragments
of larger chains, Sanger was able to deduce the sequence of amino acids in complex proteins.
In 1953, he published the sequence of insulin. This led, in 1964, to the synthesis of insulin.

The biological role and structure of proteins which began to emerge was as follows: A
mammalian cell produces roughly 10,000 different proteins. All enzymes are proteins; and
the majority of proteins are enzymes - that is, they catalyze reactions involving other biolog-
ical molecules. All proteins are built from chainlike polymers, whose monomeric sub-units
are the following twenty amino acids: glycine, aniline, valine, isoleucine, leucine, serine,
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threonine, proline, aspartic acid, glutamic acid, lysine, arginine, asparagine, glutamine,
cysteine, methionine, tryptophan, phenylalanine, tyrosine and histidine. These individual
amino acid monomers may be connected together into a polymer (called a polypeptide) in
any order - hence the great number of possibilities. In such a polypeptide, the backbone is
a chain of carbon and nitrogen atoms showing the pattern ...-C-C-N-C-C-N-C-C-N-...and
so on. The -C-C-N- repeating unit is common to all amino acids. Their individuality is
derived from differences in the side groups which are attached to the universal -C-C-N-
group.

Some proteins, like hemoglobin, contain metal atoms, which may be oxidized or reduced
as the protein performs its biological function. Other proteins, like lysozyme, contain no
metal atoms, but instead owe their biological activity to an active site on the surface of the
protein molecule. In 1909, the English physician, Archibald Garrod, had proposed a one-
gene-one-protein hypothesis. He believed that hereditary diseases are due to the absence
of specific enzymes. According to Garrod’s hypothesis, damage suffered by a gene results
in the faulty synthesis of the corresponding enzyme, and loss of the enzyme ultimately
results in the symptoms of the hereditary disease.

In the 1940’s, Garrod’s hypothesis was confirmed by experiments on the mold, Neu-
rospora, performed at Stanford University by George Beadle and Edward Tatum. They
demonstrated that mutant strains of the mold would grow normally, provided that specific
extra nutrients were added to their diets. The need for these dietary supplements could
in every case be traced to the lack of a specific enzyme in the mutant strains. Linus Paul-
ing later extended these ideas to human genetics by showing that the hereditary disease,
sickle-cell anemia, is due to a defect in the biosynthesis of hemoglobin.

RNA and ribosomes

Since DNA was known to carry the genetic message, coded into the sequence of the four
nucleotide bases, A, T, G and C, and since proteins were known to be composed of specific
sequences of the twenty amino acids, it was logical to suppose that the amino acid sequence
in a protein was determined by the base sequence of DNA. The information somehow had
to be read from the DNA and used in the biosynthesis of the protein.

It was known that, in addition to DNA, cells also contain a similar, but not quite
identical, polynucleotide called ribonucleic acid (RNA). The sugar-phosphate backbone of
RNA was known to differ slightly from that of DNA; and in RNA, the nucleotide thymine
(T) was replaced by a chemically similar nucleotide, uracil (U). Furthermore, while DNA
was found only in cell nuclei, RNA was found both in cell nuclei and in the cytoplasm of
cells, where protein synthesis takes place. Evidence accumulated indicating that genetic
information is first transcribed from DNA to RNA, and afterwards translated from RNA
into the amino acid sequence of proteins.

At first, it was thought that RNA might act as a direct template, to which successive
amino acids were attached. However, the appropriate chemical complementarity could not
be found; and therefore, in 1955, Francis Crick proposed that amino acids are first bound
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to an adaptor molecule, which is afterward bound to RNA.

In 1956, George Emil Palade of the Rockefeller Institute used electron microscopy to
study subcellular particles rich in RNA (ribosomes). Ribosomes were found to consist of
two subunits - a smaller subunit, with a molecular weight one million times the weight of
a hydrogen atom, and a larger subunit with twice this weight.

It was shown by means of radioactive tracers that a newly synthesized protein molecule
is attached temporarily to a ribosome, but neither of the two subunits of the ribosome
seemed to act as a template for protein synthesis. Instead, Palade and his coworkers
found that genetic information is carried from DNA to the ribosome by a messenger RNA
molecule (mRNA). Electron microscopy revealed that mRNA passes through the ribo-
some like a punched computer tape passing through a tape-reader. It was found that
the adapter molecules, whose existence Crick had postulated, were smaller molecules of
RNA; and these were given the name “transfer RNA” (tRNA). It was shown that, as an
mRNA molecule passes through a ribosome, amino acids attached to complementary tRNA
adaptor molecules are added to the growing protein chain.

The relationship between DNA, RNA, the proteins and the smaller molecules of a cell
was thus seen to be hierarchical: The cell’s DNA controlled its proteins (through the
agency of RNA); and the proteins controlled the synthesis and metabolism of the smaller
molecules.

The genetic code

In 1955, Severo Ochoa, at New York University, isolated a bacterial enzyme (RNA poly-
merase) which was able join the nucleotides A, G, U and C so that they became an RNA
strand. One year later, this feat was repeated for DNA by Arthur Kornberg.

With the help of Ochoa’s enzyme, it was possible to make synthetic RNA molecules
containing only a single nucleotide - for example, one could join uracil molecules into
the ribonucleic acid chain, ...U-U-U-U-U-U-... In 1961, Marshall Nirenberg and Heinrich
Matthaei used synthetic poly-U as messenger RNA in protein synthesis; and they found
that only polyphenylalanine was synthesized. In the same year, Sydney Brenner and
Francis Crick reported a series of experiments on mutant strains of the bacteriophage, T4.
The experiments of Brenner and Crick showed that whenever a mutation added or deleted
either one or two base pairs, the proteins produced by the mutants were highly abnormal
and non-functional. However, when the mutation added or subtracted three base pairs,
the proteins often were functional. Brenner and Crick concluded that the genetic language
has three-letter words (codons). With four different “letters”, A, T, G and C, this gives
sixty-four possible codons - more than enough to specify the twenty different amino acids.

In the light of the phage experiments of Brenner and Crick, Nirenberg and Matthaei
concluded that the genetic code for phenylalanine is UUU in RNA and TTT in DNA.
The remaining words in the genetic code were worked out by H. Gobind Khorana of the
University of Wisconsin, who used other mRNA sequences (such as GUGUGU..., AAGAA-
GAAG... and GUUGUUGUU...) in protein synthesis. By 1966, the complete genetic code,
specifying amino acids in terms of three-base sequences, was known. The code was found
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Figure 2.14: Information coded on DNA molecules in the cell nucleus is tran-
scribed to mRNA molecules. The messenger RNA molecules in turn provide
information for the amino acid sequence in protein synthesis.
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Figure 2.15: mRNA passes through the ribosome like a punched computer tape
passing through a tape-reader.
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Figure 2.16: This figure shows aspartic acid, whose residue (R) is hydrophilic,
contrasted with alanine, whose residue is hydrophobic.
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Table 2.1: The genetic code

TTT=Phe | TCT=Ser | TAT=Tyr | TGT=Cys
TTC=Phe | TCC=Ser | TAC=Tyr | TGC=Cys
TTA=Leu | TCA=Ser | TAA=Ter | TGA=Ter
TTG=Leu | TGC=8er | TAG=Ter | TGG=Trp
CTT=Leu | CCT=Pro | CAT=His | CGT=Arg
CTC=Leu | CCC=Pro | CAC=His | CGC=Arg
CTA=Leu | CCA=Pro | CAA=GIn | CGA=Arg
CTG=Leu | CGC=Pro | CAG=GIn | CGG=Arg

ATT=Ile | ACT=Thr | AAT=Asn | AGT=Ser

ATC=Ille | ACC=Thr | AAC=Asn | AGC=Ser

ATA=Ile | ACA=Thr | AAA=Lys | AGA=Arg
ATG=Met | AGC=Thr | AAG=Lys | AGG=Arg
GTT=Val | GCT=Ala | GAT=Asp | GGT=Gly
GTC=Val | GCC=Ala | GAC=Asp | GGC=Gly
GTA=Val | GCA=Ala | GAA=GIlu | GGA=Gly
GTG=Val | GGC=Ala | GAG=Glu | GGG=Gly

to be the same for all species studied, no matter how widely separated they were in form;
and this showed that all life on earth belongs to the same family, as postulated by Darwin.

Genetic engineering

In 1970, Hamilton Smith of Johns Hopkins University observed that when the bacterium
Haemophilus influenzae is attacked by a bacteriophage (a virus parasitic on bacteria), it
can defend itself by breaking down the DNA of the phage. Following up this observation,
he introduced DNA from the bacterium E. coli into H. influenzae. Again the foreign DNA
was broken down.

Smith had, in fact, discovered the first of a class of bacterial enzymes which came to be
called “restriction enzymes” or “restriction nucleases”. Almost a hundred other restriction
enzymes were subsequently discovered, and each was found to cut DNA at a specific base
sequence. Smith’s colleague, Daniel Nathans, used the restriction enzymes Hin dll and Hin
dill to produce the first “restriction map” of the DNA in a virus.

In 1971 and 1972, Paul Berg, and his co-workers Peter Lobban, Dale Kaiser and David
Jackson at Stanford University, developed methods for adding cohesive ends to DNA frag-
ments. Berg and his group used the calf thymus enzyme, terminal transferase, to add
short, single-stranded polynucleotide segments to DNA fragments. For example, if they
added the single-stranded segment AAAA to one fragment, and TTTT to another, then
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the two ends joined spontaneously when the fragments were incubated together. In this
way Paul Berg and his group made the first recombinant DNA molecules.

The restriction enzyme Eco RI, isolated from the bacterium E. coli, was found to
recognize the pattern, GAATTC, in one strand of a DNA molecule, and the complementary
pattern, CTTAAG, in the other strand. Instead of cutting both strands in the middle of
the six-base sequence, Eco RI was observed to cut both strands between G and A. Thus,
each side of the cut was left with a “sticky end” - a five-base single-stranded segment,
attached to the remainder of the double-stranded DNA molecule.

In 1972, Janet Mertz and Ron Davis, working at Stanford University, demonstrated
that DNA strands cut with Eco RI could be rejoined by means of another enzyme - a DNA
ligase. More importantly, when DNA strands from two different sources were cut with Fco
RI, the sticky end of one fragment could form a spontaneous temporary bond with the
sticky end of the other fragment. The bond could be made permanent by the addition of
DNA ligase, even when the fragments came from different sources. Thus, DNA fragments
from different organisms could be joined together.

Bacteria belong to a class of organisms (prokaryotes) whose cells do not have a nucleus.
Instead, the DNA of the bacterial chromosome is arranged in a large loop. In the early
1950’s, Joshua Lederberg had discovered that bacteria can exchange genetic information.
He found that a frequently-exchanged gene, the F-factor (which conferred fertility), was
not linked to other bacterial genes; and he deduced that the DNA of the F-factor was not
physically a part of the main bacterial chromosome. In 1952, Lederberg coined the word
“plasmid” to denote any extrachromosomal genetic system. In 1959, it was discovered in
Japan that genes for resistance to antibiotics can be exchanged between bacteria; and the
name “R-factors” was given to these genes. Like the F-factors, the R-factors did not seem
to be part of the main loop of bacterial DNA.

Because of the medical implications of this discovery, much attention was focused on
the R-factors. It was found that they are plasmids, small loops of DNA existing inside the
bacterial cell but not attached to the bacterial chromosome. Further study showed that, in
general, between one percent and three percent of bacterial genetic information is carried
by plasmids, which can be exchanged freely even between different species of bacteria.

In the words of the microbiologist, Richard Novick, “Appreciation of the role of plasmids
has produced a rather dramatic shift in biologists’ thinking about genetics. The traditional
view was that the genetic makeup of a species was about the same from one cell to another,
and was constant over long periods of time. Now a significant proportion of genetic traits
are known to be variable (present in some individual cells or strains, absent in others),
labile (subject to frequent loss or gain) and mobile - all because those traits are associated
with plasmids or other atypical genetic systems.”

In 1973, Herbert Boyer, Stanley Cohen and their co-workers at Stanford University
and the University of California carried out experiments in which they inserted foreign
DNA segments, cut with Eco RI, into plasmids (also cut with Eco RI). They then resealed
the plasmid loops with DNA ligase. Finally, bacteria were infected with the gene-spliced
plasmids. The result was a new strain of bacteria, capable of producing an additional
protein coded by the foreign DNA segment which had been spliced into the plasmids.
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Cohen and Boyer used plasmids containing a gene for resistance to an antibiotic, so that
a few gene-spliced bacteria could be selected from a large population by treating the culture
with the antibiotic. The selected bacteria, containing both the antibiotic-resistance marker
and the foreign DNA, could then be cloned on a large scale; and in this way a foreign gene
could be “cloned”. The gene-spliced bacteria were chimeras, containing genes from two
different species.

The new recombinant DNA techniques of Berg, Cohen and Boyer had revolutionary
implications: It became possible to produce many copies of a given DNA segment, so that
its base sequence could be determined. With the help of direct DNA-sequencing methods
developed by Frederick Sanger and Walter Gilbert, the new cloning techniques could be
used for mapping and sequencing genes.

Since new bacterial strains could be created, containing genes from other species, it
became possible to produce any protein by cloning the corresponding gene. Proteins of
medical importance could be produced on a large scale. Thus, the way was open for the
production of human insulin, interferon, serum albumin, clotting factors, vaccines, and
protein hormones such as ACTH, human growth factor and leuteinizing hormone.

It also became possible to produce enzymes of industrial and agricultural importance by
cloning gene-spliced bacteria. Since enzymes catalyze reactions involving smaller molecules,
the production of these substrate molecules through gene-splicing also became possible.

It was soon discovered that the possibility of producing new, transgenic organisms
was not limited to bacteria. Gene-splicing was also carried out on higher plants and
animals as well as on fungi. It was found that the bacterium Agrobacterium tumefaciens
contains a tumor-inducing (Ti) plasmid capable of entering plant cells and producing a
crown gall. Genes spliced into the Ti plasmid quite frequently became incorporated in the
plant chromosome, and afterwards were inherited in a stable, Mendelian fashion.

Transgenic animals were produced by introducing foreign DNA into embryo-derived
stem cells (ES cells). The gene-spliced ES cells were then selected, cultured and intro-
duced into a blastocyst, which afterwards was implanted in a foster-mother. The resulting
chimeric animals were bred, and stable transgenic lines selected.

Thus, for the first time, humans had achieved direct control over the process of evo-
lution. Selective breeding to produce new plant and animal varieties was not new - it is
one of the oldest techniques of civilization. However, the degree, precision, and speed of
intervention which recombinant DNA made possible was entirely new. In the 1970’s it
became possible to mix the genetic repertoires of different species: The genes of mice and
men could be spliced together into new, man-made forms of life!

The Polymerase Chain Reaction

One day in the early 1980’s, an American molecular biologist, Kary Mullis, was driving to
his mountain cabin with his girl friend. The journey was a long one, and to pass the time,
Kary Mullis turned over and over in his mind a problem which had been bothering him: He
worked for a California biotechnology firm, and like many other molecular biologists he had
been struggling to analyze very small quantities of DNA. Mullis realized that it would be
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desirable have a highly sensitive way of replicating a given DNA segment - a method much
more sensitive than cloning. As he drove through the California mountains, he considered
many ways of doing this, rejecting one method after the other as impracticable. Finally a
solution came to him; and it seemed so simple that he could hardly believe that he was the
first to think of it. He was so excited that he immediately pulled over to the side of the
road and woke his sleeping girlfriend to tell her about his idea. Although his girlfriend was
not entirely enthusiastic about being wakened from a comfortable sleep to be presented
with a lecture on biochemistry, Kary Mullis had in fact invented a technique which was
destined to revolutionize DNA technology: the Polymerase Chain Reaction (PCR)

The technique was as follows: Begin with a small sample of the genomic DNA to be
analyzed. (The sample may be extremely small - only a few molecules.) Heat the sample
to 95 °C to separate the double-stranded DNA molecule into single strands. Suppose that
on the long DNA molecule there is a target segment which one wishes to amplify. If the
target segment begins with a known sequence of bases on one strand, and ends with a
known sequence on the complementary strand, then synthetic “primer” oligonucleotidef_f]
with these known beginning ending sequences are added in excess. The temperature is
then lowered to 50-60 °C, and at the lowered temperature, the “start” primer attaches
itself to one DNA strand at the beginning of the target segment, while the “stop” primer
becomes attached to the complementary strand at the other end of the target segment.
Polymerase (an enzyme which aids the formation of double-stranded DNA) is then added,
together with a supply of nucleotides. On each of the original pieces of single-stranded
DNA, a new complementary strand is generated with the help of the polymerase. Then
the temperature is again raised to 95 °C, so that the double-stranded DNA separates into
single strands, and the cycle is repeated.

In the early versions of the PCR technique, the polymerase was destroyed by the high
temperature, and new polymerase had to be added for each cycle. However, it was dis-
covered that polymerase from the bacterium Thermus aquaticus would withstand the high
temperature. (Thermus aquaticus lives in hot springs.) This discovery greatly simplified
the PCR technique. The temperature could merely be cycled between the high and low
temperatures, and with each cycle, the population of the target segment doubled, concen-
trations of primers, deoxynucleotides and polymerase being continuously present.

After a few cycles of the PCR reaction, copies of copies begin to predominate over
copies of the original genomic DNA. These copies of copies have a standard length, al-
ways beginning on one strand with the start primer, and ending on that strand with the
complement of the stop primer.

Two main variants of the PCR technique are possible, depending on the length of the
oligonucleotide primers: If, for example, trinucleotides are used as start and stop primers,
they can be expected to match the genomic DNA at many points. In that case, after a
number of PCR cycles, populations of many different segments will develop. Within each

3 The flash of insight didn’t take long, but at least six months of hard work were needed before Mullis
and his colleagues could convert the idea to reality.
4 Short segments of single-stranded DNA.
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population, however, the length of the replicated segment will be standardized because of
the predominance of copies of copies. When the resulting solution is placed on a damp piece
of paper or a gel and subjected to the effects of an electric current (electrophoresis), the
populations of different molecular weights become separated, each population appearing
as a band. The bands are profiles of the original genomic DNA; and this variant of the
PCR technique can be used in evolutionary studies to determine the degree of similarity
of the genomic DNA of two species.

On the other hand, if the oligonucleotide primers contain as many as 20 nucleotides,
they will be highly specific and will bind only to a particular target sequence of the genomic
DNA. The result of the PCR reaction will then be a single population, containing only
the chosen target segment. The PCR reaction can be thought of as autocatalytic, and as
we shall see in the next section, autocatylitic systems play an important role in modern
theories of the origin of life.

Theories of chemical evolution towards the origin of life

The possibility of an era of chemical evolution prior to the origin of life entered the thoughts
of Charles Darwin, but he considered the idea to be much too speculative to be included
in his published papers and books. However, in February 1871, he wrote a letter to his
close friend Sir Joseph Hooker containing the following words:

“It is often said that all the conditions for the first production of a living organism are
now present, which could ever have been present. But if (and oh what a big if) we could
conceive in some warm little pond with all sorts of ammonia and phosphoric salts, - light,
heat, electricity etc. present, that a protein compound was chemically formed, ready to
undergo still more complex changes, at the present day such matter would be instantly
devoured, or absorbed, which would not have been the case before living creatures were
formed.”

The last letter which Darwin is known to have dictated and signed before his death
in 1882 also shows that he was thinking about this problem: “You have expressed quite
correctly my views”, Darwin wrote, “where you said that I had intentionally left the
question of the Origin of Life uncanvassed as being altogether ultra vires in the present
state of our knowledge, and that I dealt only with the manner of succession. I have met
with no evidence that seems in the least trustworthy, in favor of so-called Spontaneous
Generation. (However) I believe that I have somewhere said (but cannot find the passage)
that the principle of continuity renders it probable that the principle of life will hereafter
be shown to be a part, or consequence, of some general law..”

Modern researchers, picking up the problem where Darwin left it, have begun to throw
a little light on the problem of chemical evolution towards the origin of life. In the 1930’s
J.B.S. Haldane in England and A.I. Oparin in Russia put forward theories of an era of
chemical evolution prior to the appearance of living organisms.

In 1924 Oparin published a pamphlet on the origin of life. An expanded version of this
pamphlet was translated into English and appeared in 1936 as a book entitled The Origin
of Life on Farth. In this book Oparin pointed out that the time when life originated,
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conditions on earth were probably considerably different than they are at present: The
atmosphere probably contained very little free oxygen, since free oxygen is produced by
photosynthesis which did not yet exist. On the other hand, he argued, there were probably
large amounts of methane and ammonia in the earth’s primitive atmosphereﬂ Thus, before
the origin of life, the earth probably had a reducing atmosphere rather than an oxidizing
one. Oparin believed that energy-rich molecules could have been formed very slowly by the
action of light from the sun. On the present-day earth, bacteria quickly consume energy-
rich molecules, but before the origin of life, such molecules could have accumulated, since
there were no living organisms to consume them. (This observation is similar to the remark
made by Darwin in his 1871 letter to Hooker.)

The first experimental work in this field took place in 1950 in the laboratory of Melvin
Calvin at the University of California, Berkeley. Calvin and his co-workers wished to
determine experimentally whether the primitive atmosphere of the earth could have been
converted into some of the molecules which are the building-blocks of living organisms. The
energy needed to perform these conversions they imagined to be supplied by volcanism,
radioactive decay, ultraviolet radiation, meteoric impacts, or by lightning strokes.

The earth is thought to be approximately 4.6 billion years old. At the time when Calvin
and his co-workers were performing their experiments, the earth’s primitive atmosphere was
believed to have consisted primarily of hydrogen, water, ammonia, methane, and carbon
monoxide, with a little carbon dioxide. A large quantity of hydrogen was believed to have
been initially present in the primitive atmosphere, but it was thought to have been lost
gradually over a period of time because the earth’s gravitational attraction is too weak
to effectively hold such a light and rapidly-moving molecule. However, Calvin and his
group assumed sufficient hydrogen to be present to act as a reducing agent. In their 1950
experiments they subjected a mixture of hydrogen and carbon dioxide, with a catalytic
amount of Fe?T, to bombardment by fast particles from the Berkeley cyclotron. Their
experiments resulted in a good yield of formic acid and a moderate yield of formaldehyde.
(The fast particles from the cyclotron were designed to simulate an energy input from
radioactive decay on the primitive earth.)

Two years later, Stanley Miller, working in the laboratory of Harold Urey at the Uni-
versity of Chicago, performed a much more refined experiment of the same type. In Miller’s
experiment, a mixture of the gases methane, ammonia, water and hydrogen was subjected
to an energy input from an electric spark. Miller’s apparatus was designed so that the
gases were continuously circulated, passing first through the spark chamber, then through
a water trap which removed the non-volatile water soluble products, and then back again
through the spark chamber, and so on. The resulting products are shown as a function of
time in Figure 3.5.

The Miller-Urey experiment produced many of the building-blocks of living organisms,
including glycine, glycolic acid, sarcosine, alanine, lactic acid, N-methylalanine, S-alanine,
succinic acid, aspartic acid, glutamic acid, iminodiacetic acid, iminoacetic-propionic acid,

5 It is now believed that the main constituents of the primordial atmosphere were carbon dioxide, water,
nitrogen, and a little methane.
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formic acid, acetic acid, propionic acid, urea and N-methyl ureaﬁ. Another major product
was hydrogen cyanide, whose importance as an energy source in chemical evolution was
later emphasized by Calvin.

The Miller-Urey experiment was repeated and extended by the Ceylonese-American
biochemist Cyril Ponnamperuma and by the American expert in planetary atmospheres,
Carl Sagan. They showed that when phosphorus is made available, then in addition to
amino acids, the Miller-Urey experiment produces not only nucleic acids of the type that
join together to form DNA, but also the energy-rich molecule ATP (adenosine triphos-
phate). ATP is extremely important in biochemistry, since it is a universal fuel which
drives chemical reactions inside present-day living organisms.

Further variations on the Miller-Urey experiment were performed by Sydney Fox and
his co-workers at the University of Miami. Fox and his group showed that amino acids can
be synthesized from a primitive atmosphere by means of a thermal energy input, and that
in the presence of phosphate esters, the amino acids can be thermally joined together to
form polypeptides. However, some of the peptides produced in this way were cross linked,
and hence not of biological interest.

In 1969, Melvin Calvin published an important book entitled Chemical Evolution;
Molecular FEvolution Towards the Origin of Living Systems on Farth and Elsewhere. In
this book, Calvin reviewed the work of geochemists showing the presence in extremely
ancient rock formations of molecules which we usually think of as being produced only
by living organisms. He then discussed experiments of the Miller-Urey type - experiments
simulating the first step in chemical evolution. According to Calvin, not only amino acids
but also the bases adenine, thymine, guanine, cytosine and uracil, as well as various sugars,
were probably present in the primitive ocean in moderate concentrations, produced from
the primitive atmosphere by the available energy inputs, and not broken down because no
organisms were present.

The next steps visualized by Calvin were dehydration reactions in which the building
blocks were linked together into peptides, polynucleotides, lipids and porphyrins. Such
dehydration reactions are in a thermodynamically uphill direction. In modern organisms,
they are driven by a universally-used energy source, the high-energy phosphate bond of
adenosine triphosphate (ATP). Searching for a substance present in the primitive ocean
which could have driven the dehydrations, Calvin and his coworkers experimented with
hydrogen cyanide (HC=N), and from the results of these experiments they concluded that
the energy stored in the carbon-nitrogen triple bond of HC=N could indeed have driven
the dehydration reactions necessary for polymerization of the fundamental building blocks.
However, later work made it seem improbable that peptides could be produced from cyanide
mixtures.

In Chemical Evolution, Calvin introduced the concept of autocatalysis as a mecha-
nism for molecular selection, closely analogous to natural selection in biological evolution.
Calvin proposed that there were a few molecules in the ancient oceans which could catalyze

6 The chemical reaction that led to the formation of the amino acids that Miller observed was undoubt-
edly the Strecker synthesis: HCN + NH3 + RC=0 + H,O — RC(NH3)COOH.
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the breakdown of the energy-rich molecules present into simpler products. According to
Calvin’s hypothesis, in a very few of these reactions, the reaction itself produced more of the
catalyst. In other words, in certain cases the catalyst not only broke down the energy-rich
molecules into simpler products but also catalyzed their own synthesis. These autocat-
alysts, according to Calvin, were the first systems which might possibly be regarded as
living organisms. They not only “ate” the energy-rich molecules but they also reproduced
- i.e., they catalyzed the synthesis of molecules identical with themselves.

Autocatalysis leads to a sort of molecular natural selection, in which the precursor
molecules and the energy-rich molecules play the role of “food”, and the autocatalytic
systems compete with each other for the food supply. In Calvin’s picture of molecular
evolution, the most efficient autocatalytic systems won this competition in a completely
Darwinian way. These more efficient autocatalysts reproduced faster and competed more
successfully for precursors and for energy-rich molecules. Any random change in the direc-
tion of greater efficiency was propagated by natural selection.

What were these early autocatalytic systems, the forerunners of life? Calvin proposed
several independent lines of chemical evolution, which later, he argued, joined forces. He
visualized the polynucleotides, the polypeptides, and the metallo-porphyrins as originally
having independent lines of chemical evolution. Later, he argued, an accidental union
of these independent autocatalysts showed itself to be a still more efficient autocatalytic
system. He pointed out in his book that “autocatalysis” is perhaps too strong a word.
One should perhaps speak instead of “reflexive catalysis” , where a molecule does not
necessarily catalyze the synthesis of itself, but perhaps only the synthesis of a precursor.
Like autocatalysis, reflexive catalysis is capable of exhibiting Darwinian selectivity.

The theoretical biologist, Stuart Kauffman, working at the Santa Fe Institute, has
constructed computer models for the way in which the components of complex systems of
reflexive catalysts may have been linked together. Kauffman’s models exhibit a surprising
tendency to produce orderly behavior even when the links are randomly programmed.

In 1967 and 1968, C. Woese, F.H.C. Crick and L.E. Orgel proposed that there may have
been a period of chemical evolution involving RNA alone, prior to the era when DNA, RNA
and proteins joined together to form complex self-reproducing systems. In the early 1980’s,
this picture of an “RNA world” was strengthened by the discovery (by Thomas R. Cech
and Sydney Altman) of RNA molecules which have catalytic activity.

Today experiments aimed at throwing light on chemical evolution towards the origin
of life are being performed in the laboratory of the Nobel Laureate geneticist Jack Sjostak
at Harvard Medical School. The laboratory is trying to build a synthetic cellular system
that undergoes Darwinian evolution.

In connection with autocatalytic systems, it is interesting to think of the polymerase
chain reaction, which we discussed above. The target segment of DNA and the polymerase
together form an autocatalytic system. The “food” molecules are the individual nucleotides
in the solution. In the PCR system, a segment of DNA reproduces itself with an extremely
high degree of fidelity. One can perhaps ask whether systems like the PCR system can have
been among the forerunners of living organisms. The cyclic changes of temperature needed
for the process could have been supplied by the cycling of water through a hydrothermal
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system. There is indeed evidence that hot springs and undersea hydrothermal vents may
have played an important role in chemical evolution towards the origin of life. We will
discuss this evidence in the next section.

Throughout this discussion of theories of chemical evolution, and the experiments which
have been done to support these theories, energy has played a central role. None of the
transformations discussed above could have taken place without an energy source, or to be
more precise, they could not have taken place without a source of free energy.

Mbolecular evidence establishing family trees in evolution

Starting in the 1970’s, the powerful sequencing techniques developed by Sanger and others
began to be used to establish evolutionary trees. The evolutionary closeness or distance of
two organisms could be estimated from the degree of similarity of the amino acid sequences
of their proteins, and also by comparing the base sequences of their DNA and RNA. One of
the first studies of this kind was made by R.E. Dickerson and his coworkers, who studied the
amino acid sequences in Cytochrome C, a protein of very ancient origin which is involved in
the “electron transfer chain” of respiratory metabolism. Some of the results of Dickerson’s
studies are shown in Figure 3.6.

Comparison of the base sequences of RNA and DNA from various species proved to be
even more powerful tool for establishing evolutionary relationships. Figure 3.7 shows the
universal phylogenetic tree established in this way by Iwabe, Woese and their coworkers.E] In
Figure 3.7, all presently living organisms are divided into three main kingdoms, Eukaryotes,
Eubacteria, and Archaebacteria. Carl Woese, who proposed this classification on the basis
of comparative sequencing, wished to call the three kingdoms “Eucarya, Bacteria and
Archaea”. However, the most widely accepted terms are the ones shown in capital letters
on the figure. Before the comparative RNA sequencing work, which was performed on the
ribosomes of various species, it had not been realized that there are two types of bacteria,
so markedly different from each other that they must be classified as belonging to separate
kingdoms. One example of the difference between archaebacteria and eubacteria is that the
former have cell membranes which contain ether lipids, while the latter have ester lipids in
their cell membranes. Of the three kingdoms, the eubacteria and the archaebacteria are
“prokaryotes”, that is to say, they are unicellular organisms having no cell nucleus. Most
of the eukaryotes, whose cells contain a nucleus, are also unicellular, the exceptions being
plants, fungi and animals.

One of the most interesting features of the phylogenetic tree shown in Figure 3.7 is that
the deepest branches - the organisms with shortest pedigrees - are all hyperthermophiles,
i.e. they live in extremely hot environments such as hot springs or undersea hydrothermal
vents. The shortest branches represent the most extreme hyperthermophiles. The group

7 “Phylogeny” means "the evolutionary development of a species”. ”Ontogeny” means “the growth and
development an individual, through various stages, for example, from fertilized egg to embryo, and so on.”
Ernst Haeckel, a 19th century follower of Darwin, observed that, in many cases, “ontogeny recapitulates

phylogeny.”
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of archaebacteria indicated by (1) in the figure includes Thermofilum, Thermoproteus, Py-
robaculum, Pyrodictium, Desulfurococcus, and Sulfolobus - all hypothermophilesﬂ Among
the eubacteria, the two shortest branches, Aquifex and Thermatoga are both hyperther-
mophiles’]

The phylogenetic evidence for the existence of hyperthermophiles at a very early stage
of evolution lends support to a proposal put forward in 1988 by the German biochemist
Giinter Wachterhauser. He proposed that the reaction for pyrite formation,

FeS + HyS — FeSy + 2H + +2¢e~

which takes place spontaneously at high temperatures, supplied the energy needed to drive
the first stages of chemical evolution towards the origin of life. Wachterhauser pointed out
that the surface of the mineral pyrite (FeSs) is positively charged, and he proposed that,
since the immediate products of carbon-dioxide fixation are negatively charged, they would
be attracted to the pyrite surface. Thus, in Wachterhauser’s model, pyrite formation not
only supplied the reducing agent needed for carbon-dioxide fixation, but also the pyrite
surface aided the process. Wachterhauser further proposed an archaic autocatylitic carbon-
dioxide fixation cycle, which he visualized as resembling the reductive citric acid cycle
found in present-day organisms, but with all reducing agents replaced by FeS + H,S,
with thioester activation replaced by thioacid activation, and carbonyl groups replaced by
thioenol groups. The interested reader can find the details of Wachterhéuser’s proposals
in his papers, which are listed at the end of this chapter.

A similar picture of the origin of life has been proposed by Michael J. Russell and Alan
J. Hall in 1997. In this picture “...(i) life emerged as hot, reduced, alkaline, sulphide-bearing
submarine seepage waters interfaced with colder, more oxidized, more acid, Fe?* >>Fe3*-
bearing water at deep (ca. 4km) floors of the Hadian ocean ca. 4 Gyr ago; (ii) the
difference in acidity, temperature and redox potential provided a gradient of pH (ca. 4
units), temperature (ca. 60°C) and redox potential (ca. 500 mV) at the interface of
those waters that was sustainable over geological time-scales, providing the continuity
of conditions conducive to organic chemical reactions needed for the origin of life...” [[%]
Russell, Hall and their coworkers also emphasize the role that may have been played by
spontaneously-formed 3-dimensional mineral chambers (bubbles). They visualize these
as having prevented the reacting molecules from diffusing away, thus maintaining high
concentrations.

Table 3.2 shows the energy-yielding reactions which drive the metabolisms of some
organisms which are of very ancient evolutionary origin. All the reactions shown in the table
make use of Hy, which could have been supplied by pyrite formation at the time when the

8 Group (2) in Figure 3.7 includes Methanothermus, which is hyperthermophilic, and Methanobac-
terium, which is not. Group (3) includes Archaeoglobus, which is hyperthermophilic, and Halococcus,
Halobacterium, Methanoplanus, Methanospirilum, and Methanosarcina, which are not.

9 Thermophiles are a subset of the larger group of extremophiles.

108ee W. Martin and M.J. Russell, On the origins of cells: a hypothesis for the evolutionary transitions
from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells, Philos.
Trans. R. Soc. Lond. B Biol. Sci., 858, 59-85, (2003).
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Table 2.2: Energy-yielding reactions of some lithoautotrophic hyperther-
mophiles. (After K.O. Setter)

Energy-yielding reaction Genera

4Hy4+COy — CH4+2H50 Methanopyrus, Methanothermus,
Methanococcus

Hy+S° — HsS Pyrodictium, Thermoproteus,
Pyrobaculum, Acidianus,
Stygiolobus

4H,4+H5SO4 — HyS+4H,O  Archaeoglobus

organisms evolved. All these organisms are lithoautotrophic, a word which requires some
explanation: A heterotrophic organism is one which lives by ingesting energy-rich organic
molecules which are present in its environment. By contrast, an autotrophic organism
ingests only inorganic molecules. The lithoautotrophs use energy from these inorganic
molecules, while the metabolisms of photoautotrophs are driven by energy from sunlight.

Evidence from layered rock formations called “stromatolites”, produced by colonies of
photosynthetic bacteria, show that photoautotrophs (or phototrophs) appeared on earth at
least 3.5 billion years ago. The geological record also supplies approximate dates for other
events in evolution. For example, the date at which molecular oxygen started to become
abundant in the earth’s atmosphere is believed to have been 2.0 billion years ago, with
equilibrium finally being established 1.5 billion years in the past. Multi-cellular organisms
appeared very late on the evolutionary and geological time-scale - only 600 million years
ago. By collecting such evidence, the Belgian cytologist Christian de Duve has constructed
the phylogenetic tree shown in Figure 3.8, showing branching as a function of time. One
very interesting feature of this tree is the arrow indicating the transfer of “endosymbionts”
from the eubacteria to the eukaryotes. In the next section, we will look in more detail at
this important event, which took place about 1.8 billion years ago.

Symbiosis

The word “symbiosis” is derived from Greek roots meaning “living together”. It was coined
in 1877 by the German botanist Albert Bernard Frank. By that date, it had become
clear that lichens are composite organisms involving a fungus and an alga; but there was
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Figure 2.21: Branching of the universal phylogenetic tree as a function of time. “Protists”
are unicellular eukaryotes.
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controversy concerning whether the relationship was a parasitic one. Was the alga held
captive and exploited by the fungus? Or did the alga and the fungus help each other,
the former performing photosynthesis, and the latter leeching minerals from the lichen’s
environment? In introducing the word “symbiosis” (in German, “Symbiotismus”), Prank
remarked that “We must bring all the cases where two different species live on or in one
another under a comprehensive concept which does not consider the role which the two
individuals play but is based on the mere coexistence, and for which the term symbiosis
is to be recommended.” Thus the concept of symbiosis, as defined by Frank, included all
intimate relationships between two or more species, including parasitism at one extreme
and “mutualism” at the other. However, as the word is used today, it usually refers to
relationships which are mutually beneficial.

Charles Darwin himself had been acutely aware of close and mutually beneficial relation-
ships between organisms of different species. For example, in his work on the fertilization
of flowers,; he had demonstrated the way in which insects and plants can become exquisitely
adapted to each other’s needs. However, T.H. Huxley, “Darwin’s bulldog”, emphasized
competition as the predominant force in evolution. “The animal world is on about the
same level as a gladiator’s show”, Huxley wrote in 1888, “The creatures are fairly well
treated and set to fight - whereby the strongest, the swiftest and the cunningest live to
fight another day. The spectator has no need to turn his thumbs down, as no quarter is
given.” The view of nature as a sort of ”gladiator’s contest” dominated the mainstream
of evolutionary thought far into the 20th century; but there was also a growing body of
opinion which held that symbiosis could be an extremely important mechanism for the
generation of new species.

Among the examples of symbiosis studied by Frank were the nitrogen-fixing bacteria
living in nodules on the roots of legumes, and the mycorrhizal fungi which live on the roots
of forest trees such as oaks, beech and conifers. Frank believed that the mycorrhizal fungi
aid in the absorption of nutrients. He distinguished between “ectotrophic” fungi, which
form sheaths around the root fibers, and “endotrophic” fungi, which penetrate the root
cells. Other examples of symbiosis studied in the 19th century included borderline cases
between plants and animals, for ex- ample, paramecia, sponges, hydra, planarian worms
and sea anemones, all of which frequently contain green bodies capable of performing
photosynthesis.

Writing in 1897, the American lichenologist Albert Schneider prophesied that “future
studies may demonstrate that.., plasmic bodies (within the eukaryote cell), such as chloro-
phyll granules, leucoplastids, chromoplastids, chromosomes, centrosomes, nucleoli, etc.,
are perhaps symbionts comparable to those in less highly specialized symbiosis. Reinke
expresses the opinion that it is not wholly unreasonable to suppose that some highly skilled
scientist of the future may succeed in cultivating chlorophyll-bodies in artificial media.”

19th century cytologists such as Robert Altman, Andreas Schimper and A. Benda
focused attention on the chlorophyll-bodies of plants, which Schimper named chloroplasts,
and on another type of subcellular granule, present in large numbers in all plant and animal
cells, which Benda named mitochondria, deriving the name from the Greek roots mitos
(thread) and chrondos (granule). They observed that these bodies seemed to reproduce
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themselves within the cell in very much the manner that might be expected if they were
independent organisms. Schimper suggested that chloroplasts are symbionts, and that
green plants owe their origin to a union of a colorless unicellular organism with a smaller
chlorophyll-containing species.

The role of symbiosis in evolution continued to be debated in the 20th century. Mi-
tochondria were shown to be centers of respiratory metabolism; and it was discovered
that both mitochondria and chloroplasts contain their own DNA. However, opponents of
their symbiotic origin pointed out that mitochondria alone cannot synthesize all their own
proteins: Some mitochondrial proteins require information from nuclear DNA. The de-
bate was finally settled in the 1970’s, when comparative sequencing of ribosomal RNA in
the laboratories of Carl Woese, W. Ford Doolittle and Michael Gray showed conclusively
that both chloroplasts and mitochondria were originally endosymbionts. The ribosomal
RNA sequences showed that chloroplasts had their evolutionary root in the cyanobacteria,
a species of eubacteria, while mitochondria were traced to a group of eubacteria called
the alpha-proteobacteria. Thus the evolutionary arrow leading from the eubacteria to the
eukaryotes can today be drawn with confidence, as in Figure 3.8.

Cyanobacteria are bluish photosynthetic bacteria which often become linked to one
another so as to form long chains. They can be found today growing in large colonies
on seacoasts in many parts of the world, for example in Baja California on the Mexican
coast. The top layer of such colonies consists of the phototrophic cyanobacteria, while
the organisms in underlying layers are heterotrophs living off the decaying remains of
the cyanobacteria. In the course of time, these layered colonies can become fossilized,
and they are the source of the layered rock formations called stromatolites (discussed
above). Geological dating of ancient stromatolites has shown that cyanobacteria must
have originated at least 3.5 billion years ago.

Cyanobacteria contain two photosystems, each making use of a different type of chloro-
phyll. Photosystem I, which is thought to have evolved first, uses the energy of light to
draw electrons from inorganic compounds, and sometimes also from organic compounds
(but never from water). Photosystem II, which evolved later, draws electrons from water.
Hydrogen derived from the water is used to produce organic compounds from carbon-
dioxide, and molecular oxygen is released into the atmosphere. Photosystem II never
appears alone. In all organisms which possess it, Photosystem II is coupled to Photosys-
tem I, and together the two systems raise electrons to energy levels that are high enough
to drive all the processes of metabolism. Dating of ancient stromatolites makes it proba-
ble that cyanobacteria began to release molecular oxygen into the earth’s atmosphere at
least 3.5 billion years ago; yet from other geological evidence we know that it was only
2 billion years ago that the concentration of molecular oxygen began to rise, equilibrium
being reached 1.5 billion years ago. It is believed that ferrous iron, which at one time was
very abundant, initially absorbed the photosynthetically produced oxygen. This resulted
in the time-lag, as well as the ferrous-ferric mixture of iron which is found in the mineral
magnetite.

When the concentrations of molecular oxygen began to rise in earnest, most of the
unicellular microorganisms living at the time found themselves in deep trouble, faced with
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extinction, because for them oxygen was a deadly poison; and very many species undoubt-
edly perished. However, some of the archaebacteria retreated to isolated anaerobic niches
where we find them today, while others found ways of detoxifying the poisonous oxygen.
Among the eubacteria, the ancestors of the alpha-proteobacteria were particularly good at
dealing with oxygen and even turning it to advantage: They developed the biochemical
machinery needed for respiratory metabolism.

Meanwhile, during the period between 3.5 and 2.0 billion years before the present,
an extremely important evolutionary development had taken place: Branching from the
archaebacteria, a line of largd'] heterotrophic unicellular organisms had evolved. They
lacked rigid cell walls, and they could surround smaller organisms with their flexible outer
membrane, drawing the victims into their interiors to be digested. These new heterotrophs
were the ancestors of present-day eukaryotes, and thus they were the ancestors of all
multicellular organisms.

Not only are the cells of present-day eukaryotes very much larger than the cells of
archaebacteria and eubacteria; their complexity is also astonishing. Every eukaryote cell
contains numerous intricate structures: a nucleus, cytoskeleton, Golgi apparatus, endoplas-
mic reticulum, mitochondria, peroxisomes, chromosomes, the complex structures needed
for mitotic cell division, and so on. Furthermore, the genomes of eykaryotes contain very
much more information than those of prokaryotes. How did this huge and relatively sudden
increase in complexity and information content take place? According to a growing body
of opinion, symbiosis played an important role in this development.

The ancestors of the eukaryotes were in the habit of drawing the smaller prokaryotes
into their interiors to be digested. It seems likely that in a few cases the swallowed prokary-
otes resisted digestion, multiplied within the host, were transmitted to future generations
when the host divided, and conferred an evolutionary advantage, so that the result was a
symbiotic relationship. In particular, both mitochondria and chloroplasts have definitely
been proved to have originated as endosymbionts. It is easy to understand how the pho-
tosynthetic abilities of the chloroplasts (derived from cyanobacteria) could have conferred
an advantage to their hosts, and how mitochondria (derived from alpha-proteobacteria)
could have helped their hosts to survive the oxygen crisis. The symbiotic origin of other
sub-cellular organelles is less well understood and is currently under intense investigation.

If we stretch the definition of symbiosis a little, we can make the concept include coop-
erative relationships between organisms of the same species. For example, cyanobacteria
join together to form long chains, and they live together in large colonies which later turn
into stromatolites. Also, some eubacteria have a mechanism for sensing how many of their
species are present, so that they know, like a wolf pack, when it is prudent to attack a
larger organism. This mechanism, called “quorum sensing”, has recently attracted much
attention among medical researchers.

The cooperative behavior of a genus of unicellular eukaryotes called slime molds is
particularly interesting because it gives us a glimpse of how multicellular organisms may
have originated. The name of the slime molds is misleading, since they are not fungi, but

1 not large in an absolute sense, but large in relation to the prokaryotes
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heterotrophic protists similar to amoebae. Under ordinary circumstances, the individual
cells wander about independently searching for food, which they draw into their interiors
and digest, a process called “phagocytosis”. However, when food is scarce, they send out a
chemical signal of distress. Researchers have analyzed the molecule which expresses slime
mold unhappiness, and they have found it to be cyclic adenosine monophosphate (cAMP).
At this signal, the cells congregate and the mass of cells begins to crawl, leaving a slimy
trail. As it crawls, the community of cells gradually develops into a tall stalk, surmounted
by a sphere - the “fruiting body”. Inside the sphere, spores are produced by a sexual
process. If a small animal, for example a mouse, passes by, the spores may adhere to its
coat; and in this way they may be transported to another part of the forest where food is
more plentiful.

Thus slime molds represent a sort of missing link between unicellular and multicellular
or organisms. Normally the cells behave as individualists, wandering about independently,
but when challenged by a shortage of food, the slime mold cells join together into an entity
which closely resembles a multicellular organism. The cells even seem to exhibit altruism,
since those forming the stalk have little chance of survival, and yet they are willing to
perform their duty, holding up the sphere at the top so that the spores will survive and
carry the genes of the community into the future. We should especially notice the fact that
the cooperative behavior of the slime mold cells is coordinated by chemical signals.

Sponges are also close to the borderline which separates unicellular eukaryotes (protists)
from multicellular organisms, but they are just on the other side of the border. Normally
the sponge cells live together in a multicellular community, filtering food from water.
However, if a living sponge is forced through a very fine cloth, it is possible to separate the
cells from each other. The sponge cells can live independently for some time; but if many
of them are left near to one another, they gradually join together and form themselves into
a new sponge, guided by chemical signals. In a refinement of this experiment, one can take
two living sponges of different species, separate the cells by passing the sponges through
a fine cloth, and afterwards mix all the separated cells together. What happens next is
amazing: The two types of sponge cells sort themselves out and become organized once
more into two sponges - one of each species.

Slime molds and sponges hint at the genesis of multicellular organisms, whose evolution
began approximately 600 million years ago. Looking at the slime molds and sponges, we
can imagine how it happened. Some unicellular organisms must have experienced an
enhanced probability of survival when they lived as colonies. Cooperative behavior and
division of labor within the colonies were rewarded by the forces of natural selection, with
the selective force acting on the entire colony of cells, rather than on the individual cell.
This resulted in the formation of cellular societies and the evolution of mechanisms for cell
differentiation. The division of labor within cellular societies (i.e., differentiation) came to
be coordinated by chemical signals which affected the transcription of genetic information
and the synthesis of proteins. Each cell within a society of cells possessed the entire
genome characteristic of the colony, but once a cell had been assigned its specific role in
the economy of the society, part of the information became blocked - that is, it was not
expressed in the function of that particular cell. As multicellular organisms evolved, the
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chemical language of intercellular communication became very much more complex and
refined. We will discuss the language of intercellular communication in more detail in a
later section.

Geneticists have become increasingly aware that symbiosis has probably played a major
role in the evolution of multicellular organisms. We mentioned above that, by means of
genetic engineering techniques, transgenic plants and animals can be produced. In these
chimeras, genetic material from a foreign species is incorporated into the chromosomes, so
that it is inherited in a stable, Mendelian fashion. J.A. Shapiro, one of whose articles is
referenced at the end of this chapter, believes that this process also occurs in nature, so
that the conventional picture of evolutionary family trees needs to be corrected. Shapiro
believes that instead of evolutionary trees, we should perhaps think of webs or networks.

For example, it is tempting to guess that symbiosis may have played a role in the
development of the visual system of vertebrates. One of the archaebacteria, the purple
halobacterium halobium (recently renamed halobacterium salinarum), is able to perform
photosynthesis by means of a protein called bacterial rhodopsin, which transports hydrogen
ions across the bacterial membrane. This protein is a near chemical relative of rhodopsin,
which combines with a carotinoid to form the “visual purple” used in the vertebrate eye. It
is tempting to think that the close similarity of the two molecules is not just a coincidence,
and that vertebrate vision originated in a symbiotic relationship between the photosyn-
thetic halobacterium and an aquatic ancestor of the vertebrates, the host being able to
sense when the halobacterium was exposed to light and therefore transporting hydrogen
ions across its cell membrane.

In this chapter, we have looked at the flow of energy and information in the origin and
evolution of life on earth. We have seen how energy-rich molecules were needed to drive
the first steps in the origin of life, and how during the evolutionary process, information
was preserved, transmitted, and shared between increasingly complex organisms, the whole
process being driven by an input of energy. In the next chapter, we will look closely at the
relationships between energy and information.

2.4 Life elsewhere in the universe

On December 18, 2017, scientists from the University of California published an article in
Science News entitled Ancient fossil microorganisms indicate that life in the universe is
common. According to the article:

“A new analysis of the oldest known fossil microorganisms provides strong evidence to
support an increasingly widespread understanding that life in the universe is common.

“The microorganisms, from Western Australia, are 3.465 billion years old. Scientists
from UCLA and the University of Wisconsin-Madison report today in the journal Proceed-
ings of the National Academy of Sciences that two of the species they studied appear to
have performed a primitive form of photosynthesis, another apparently produced methane
gas, and two others appear to have consumed methane and used it to build their cell walls.

“The evidence that a diverse group of organisms had already evolved extremely early in
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the Earth’s history, combined with scientists’ knowledge of the vast number of stars in the
universe and the growing understanding that planets orbit so many of them, strengthens
the case for life existing elsewhere in the universe because it would be extremely unlikely
that life formed quickly on Earth but did not arise anywhere else.”
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Chapter 3

OUR ANCESTORS

3.1 Timeline for the evolution of life on the Earth

The dates shown here are taken from the Wikipedia article entitled Timeline of the evo-
lutionary history of life. The unit BYA means “Billion years ago”, while MYA means
“Million years ago”.

4.540 BYA. Earliest Earth

4.404 BYA, First appearance of water on Earth.

4.280 BYA. Earliest appearance of life on Earth[]

3.900 BYA, Cells resembling prokaryotes appear. These first organisms
use CO, as a source of carbon, and obtain energy by oxidizing inorganic
materials.

3.500 BYA, Lifetime of the last universal common ancestor. The split
between bacteria and archae occurs.

3.000 BYA, Photosynthetic cyanobacteria evolved. They used water as a
reducing agent and produced oxygen as a waste product.

2.800 BYA, Earliest evidence of microbial life on land.

2.500 BYA, Great Oxygenation Event, produced by cyanobacteria’s oxo-
genic photosynthesis.

1.850 BYA, Eukaryotic cells appear. They probably evolved from cooper-
ative assemblages of prokaryotes (phagocytosis and symbiosis).

1.200 BYA, Sexual reproduction first appears in the fossil records. It may
have existed earlier.

0.800 BYA, First multicellular organisms.

0.600 BYA, The ozone layer is formed, making landbased life more possi-
ble.

0.580-0.500 BYA, The Cambrian Explosion. Biodiversity quickly increases
and most modern phyla of animals appear in the fossil record.

!This date for the first appearance of life on earth is earlier than previously thought possible. It is
based on the ratio of carbon isotopes in zircon rocks recently found in Australia.
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0.560 BYA, Fungi appear.

0.550 BYA, Comb jellies, sponges, sea anemones and corals evolved.

0.530 BYA, The first known fossilized footprints on land.

0.485 BYA, Jawless fishes.

0.434 BYA, The first primitive plants move onto land, accompanied by

fungi which may have helped them.

0.420 BYA, Ray-finned fishes, arachnids, and land scorpions.

e 0.410 BYA, First signs of teeth in fish.

e 0.395 BYA, First lichens, stonewarts, harvestmen and springtails. The
first known tracks of four-legged animals on land.

e 0.363 BYA, The Carboniferous Period starts. Insects appear on land and
soon learn to fly. Seed-bearing plants and forests cover the land.

e 0.360 BYA, First crabs and ferns. Land flora dominated by ferns.

e 0.350 BYA, Large sharks, ratfishes and hagfish.

e 0.320 BYA, The precursors of mammals separate from the precursors to
reptiles.

e 0.280 BYA, Earliest beetles, seed plants and conifers diversify.

e 0.2514 BYA, The Permian-Triassic extinction event eliminates 90-95% of
marine species, and 70% of terrestrial vertebrates.E]

e 0.245 BYA, Earliest icthyosaurs (i.e. seagoing dinosaurs).

e 0.225 BYA, Earliest dinosaurs. First mammals.

e 0.220 BYA, Seed-producing forests dominate the land. Herbivours grow
to huge sizes. First flies and turtles.

e 0.155 BYA, First bloodsucking insects. Archaeopteryx, a possible ancestor
of birds, appears.

e 0.130 BYA, Rise of the flowering plants. Coevolution of plants and their

pollinators.

0.115 BYA, First monotreme (egg-laying) mammals.

0.110 BYA, Toothed diving birds.

0.100 BYA, Earliest bees.

0.090 BYA, Probable origin of placental mammals. However, the first

undisputed fossil evidence is from 0.066 BYA.

0.080 BYA, First ants.

e 0.066 BYA, The Cretaceous-Paleogene extinction event wipes out about
half of all animal species, including all of the dinosaurs except the birds.
Afterwards, mammals become the dominant animal species. Conifers
dominate northern forests.

e 0.060 BYA, Earliest true primates. Diversification of large, flightless birds.
The ancestors of carnivorous mammals had appeared.

e 0.055 BYA, Diversification of birds. First songbirds, parrots, loons, swifts,

and woodpeckers. First whale.

2Today, there is a danger that human use of fossil fuels will initiate a very similar extinction event.
This danger will be discussed in a later chapter.
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e 0.052 BYA, First bats appear in the fossil record.

0.050 BYA, Tapirs, rhinoceroses and camels appear. Diversification of

primates.

0.040 BYA, Modern-type moths and butterflies were alive.

0.035 BYA, Grasses diversify. Many modern mammal groups appear.

0.030 BYA, Earliest pigs and cats.

0.025 BYA, First deer.

0.020 BYA, Giraffes, hyenas, bears, and giant anteaters appear. Birds

increase in diversity.

e 0.015 BYA, First mastodons. Australian megafauna diversify. Kangaroos
appear.

e 0.010 BYA, Grasslands and savannahs are established. Major diversifica-
tion of grassland animals and snakes. Insects diversify, especially ants and
termites.

e 0.0095 BYA = 9.50 MYA, Great American Interchange occurs. Armadil-
los, opossums, hummingbirds, “terror birds”, and ground sloths were
among the species that migrated from South America to North Amer-
ica after a land bridge formed between the previously isolated continents.
Species moving in the opposite direction included horses, tapirs, saber-
toothed cats, jaguars, bears, coaties, ferrets, otters, skunks and deer.

e 6.50 MYA, First homanins (our human ancestors diverging from the apes).

e 6.00 MYA, Australopithecines (extinct close relatives of humans after the
split with chimpanzees) diversify.

e 5.00 MYA, First tree sloths and hippopotami. Diversification of grazing
and carnivorous mammals.

e 4.00 MYA, Diversification of Australopithecines. The first modern ele-
phants, giraffes, zebras, lions, rhinoceros and gazelles.

e 2.80 MYA, Appearance of a species intermediate between the Anthrop-
ithecines and Homo Habilis.

e 2.10 MYA, First member of the genus Homo appears, Homo habilis.

3.2 Early ancestors of humans

In his Systema Naturae, published in 1735, Carolus Linnaeus correctly classified humans as
mammals associated with the anthropoid apes. However, illustrations of possible ancestors
of humans in a later book by Linnaeus, showed one with a manlike head on top of a long-
haired body, and another with a tail. A century later, in 1856, light was thrown on human
ancestry by the discovery of some remarkable bones in a limestone cave in the valley of
Neander, near Diisseldorf - a skullcap and some associated long bones. The skullcap was
clearly manlike, but the forehead was low and thick, with massive ridges over the eyes. The
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famous pathologist Rudolf Virchow dismissed the find as a relatively recent pathological
idiot. Other authorities thought that it was “one of the Cossacks who came from Russia
in 1814”. Darwin knew of the “Neanderthal man”, but he was too ill to travel to Germany
and examine the bones. However, Thomas Huxley examined them, and in his 1873 book,
Zoological Evidences of Man’s Place in Nature, he wrote: “Under whatever aspect we view
this cranium... we meet with apelike characteristics, stamping it as the most pithecoid
(apelike) of human crania yet discovered.”

“In some older strata,” Huxley continued, “do the fossilized bones of an ape more an-
thropoid, or a man more pithecoid, than any yet known await the researches of some unborn
paleontologist?” Huxley’s question obsessed Eugene Dubois, a young Dutch physician, who
reasoned that such a find would be most likely in Africa, the home of chimpanzees and
gorillas, or in the East Indies, where orang-outangs live. He was therefore happy to be
appointed to a post in Sumatra in 1887. While there, Dubois heard of a site in Java where
the local people had discovered many ancient fossil bones, and at this site, after much
searching, he uncovered a cranium which was much too low and flat to have belonged to
a modern human. On the other hand it had features which proved that it could not have
belonged to an ape. Near the cranium, Dubois found a leg bone which clearly indicated
upright locomotion, and which he (mistakenly) believed to belong to the same creature.
In announcing his find in 1894, Dubois proposed the provocative name “Pithecanthropus
erectus”, i.e. “upright-walking ape-man”

Instead of being praised for this discovery, Dubois was denounced. His attackers in-
cluded not only the clergy, but also many scientists (who had expected that an early
ancestor of man would have an enlarged brain associated with an apelike body, rather
than apelike head associated with upright locomotion). He patiently exhibited the fossil
bones at scientific meetings throughout Europe, and gave full accounts of the details of
the site where he had unearthed them. When the attacks nevertheless continued, Dubois
became disheartened, and locked the fossils in a strongbox, out of public view, for the next
28 years. In 1923, however, he released a cast of the skull, which showed that the brain
volume was about 900 cm?® - well above the range of apes, but below the 1200-1600 cm?
range which characterizes modern man. Thereafter he again began to exhibit the bones at
scientific meetings.

The fossil bones of about 1000 hominids, intermediate between apes and humans, have
now been discovered. The oldest remains have been found in Africa. Many of these were
discovered by Raymond Dart and Robert Broom, who worked in South Africa, and by
Louis and Mary Leaky and their son Richard, who made their discoveries at the Olduvai
Gorge in Tanzania and at Lake Rudolph in Kenya.

One can deduce from biochemical evidence that the most recent common ancestor of
the anthropoid apes and of humans lived in Africa between 5 and 10 million years before
the present. Although the community of palacoanthropologists is by no means unanimous,
there is reasonably general agreement that while A. africanus is probably an ancestor of H.
habilis and of humans, the “robust” species, A. aethiopicus, A. robustus and A. boiseilﬂ

3 A. boisei was originally called ”Zinjanthropus boisei” by Mary and Louis Leakey who discovered the
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represent a sidebranch which finally died out. “Pithecanthropus erectus”, found by Dubois,
is now classified as a variety of Homo erectus, as is “Sinanthropus pekinensis” (”Peking
man”), discovered in 1929 near Beijing, China.

Footprints 3.7 million years old showing upright locomotion have been discovered near
Laetoli in Tanzania. The Laetoli footprints are believed to have been made by A. afarensis,
which was definitely bipedal, but upright locomotion is thought to have started much
earlier. There is even indirect evidence which suggests that A. ramidus may have been
bipedal. Homo habilis was discovered by Mary and Louis Leakey at the Olduvai Gorge,
among beds of extremely numerous pebble tools. The Leakeys gave this name (meaning
“handy man”) to their discovery in order to call special attention to his use of tools. The
brain of H. habilis is more human than that of A. africanus, and in particular, the bulge
of Broca’s area, essential for speech, can be seen on one of the skull casts. This makes it
seem likely that H. habilis was capable of at least rudimentary speech.

Homo erectus was the first species of hominid to leave Africa, and his remains are found
not only there, but also in Europe and Asia. “Peking man”, who belonged to this species,
probably used fire. The stone tools of H. erectus were more advanced than those of H.
habilis; and there is no sharp line of demarcation between the most evolved examples of
H. erectus and early fossils of archaic H. sapiens.

Homo sapiens neanderthalensis lived side by side with Homo sapiens sapiens (modern
man) for a hundred thousand years; but in relatively recent times, only 30,000 years ago,
Neanderthal man disappeared. Did modern man outcompete him? Do present-day humans
carry any Neanderthal genes? To what extent was modern man influenced by Neanderthal
cultural achievements? Future research may tell us the answers to these questions, but for
the moment they are mysteries.

The hominid species shown in Table 4.1 show an overall progression in various char-
acteristics: Their body size and brain size grew. They began to mature more slowly and
to live longer. Their tools and weapons increased in sophistication. Meanwhile their teeth
became smaller, and their skeletons more gracile - less heavy in proportion to their size.
What were the evolutionary forces which produced these changes? How were they rewarded
by a better chance of survival?

fossil remains at the Olduvai Gorge. Charles Boise helped to finance the Leakey’s expedition.
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Table 3.1: Hominid species

genus and species

years before present

brain volume

Ardipithicus ramidus
Australopithecus anamensis
Australopithecus afarensis
Australopithecus africanus
Australopithecus aethiopicus
Paranthropus robustus
Australopithecus boisei
Homo habilis

Homo erectus

Homo sapiens (archaic)
Homo sapiens neand.

Homo sapiens sapiens

4.35 to 4.45 million
4.2 to 3.9 million
3.9 to 3.0 million

3 to 2 million

2.6 to 2.3 million

2 to 1.5 million

2.1 to 1.1 million
2.1 to 1.5 million
1.9 to 0.143 million
0.5 to 0.2 million
0.23 to 0.04 million

0.12 mil. to present

300 to 350 cm?

375 to 550 cm?
420 to 500 cm?
410 cm?

410 to 530 cm?
530 cm?

550 to 687 cm?
750 to 1225 cm?
1200 cm?

1450 cm?

1350 cm?
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Table 3.2: Paleolithic cultures

name years before present characteristics
Oldowan 2.4 to 1.5 million Africa, flaked pebble tools
Choukoutien 1.2 to 0.5 million chopper tool culture of east Asia
Abbevillian 500,000 to 450,000  crude stone handaxes
Africa, Europe, northeast Asia
Mousterian 70,000 to 20,000 produced by Neanderthal man,
retouched core and flake tools,
wooden spears, fire, burial of dead
Aurignacian 50,000 to 20,000 western Europe, fine stone blades,
pins and awls of bone, fire, cave art
Solutrian 20,000 to 17,000 France and central Europe,
long, pressure-flaked bifacial blades
Magdalenian 17,000 to 10,000 western Europe, reindeer hunting

awls and needles of bone and antler
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3.3 Ardipithicus ramidus

17 bone fragments belonging to our distant ancestor, A. ramidus, were discovered in 1992-
1993 by a research team headed by Tim White. The discovery was made in the Afar
Depression of the Middle Awash river valley of Ethiopia. In 1994, more fragments were
discovered, amounting finally to 45% of a complete skeleton. On the basis of the age of the
stratum in which the bones were found, A. ramidus is thought to have lived between 4.35
and 4.45 years ago. This hominid walked upright, but had foot with a thumblike big toe
which could grasp tree branches. A. ramidus had a small brain, only 300-350 cm.?, which
is smaller than a modern female chimpanzee. Nevertheless, the upright locomotion of the
species identifies it as a human ancestor rather than an ape.

3.4 Australopithecus

Australopithecus afarensis (“Lucy”)

Several hundred fossil bone fragments belonging to A. afarensis were discovered in 1974
in the Awash valley of Ethiopia, not far from the site where A. ramidus was discovered
in 1992-1994. Although discovered earlier, the bones belong to one of our ancestors who
lived at a later period, 3.2 million years before the present. The bones belong to a young
female who was given the fanciful nickname “Lucy”, after the popular Beetles song “Lucy
in the Sky With Diamonds” which was being played loudly and repeatedly at the campsite
of the discovererd]

Lucy was 1.1 meters tall, (3 feet and 7 inches), with a brain-size comparable to a modern
chimpanzee, but her upright locomotion marked her as a human ancestor rather than an
ape. She had long arms in relation to the length of her legs, although not so long as those
of a chimpanzee.

Homo habilis (“handy man”)

Louis Leakey (father of Richard Leakey), and his wife, Mary Leakey, found the first trace
of H. habilis in 1955: two hominin teeth. These were later classified as “milk teeth”, and
therefore considered difficult to link to taxa, unlike permanent teeth. However, in 1959,
Mary Leakey recovered the cranium of a young adult that had a small brain, large face,
tiny canines and massive chewing teeth. The remains were associated with stone tools of
the Oldowan type. In 1964 the fossils were identified as a separate species and given the
name Homo habilis.

Short in stature, with disproportionately long arms compared with H. sapiens, and a
brain about half the size of that of modern humans, H. habilis was very apelike, and many
palaeoanthropologists believe that the species ought to be classified with the Australop-

4Donald Johanson, Mary Leaky, Yves Coppens and their team.
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ithicenes. On the other hand, the relatively advances stone tools and omnivorous diet of
H. habilis support the classification of the species within the genus Homo.

Homo erectus

As mentioned above, the first fossil remains of H. erectus were discovered in Sumatra in
1857 by the young Dutch physician, Eugene Dubois. Most paleoanthropologists believe
that H. erectus evolved in Africa, and was the first hominin to leave that continent, during
a period when the climates of Africa and the Middle East were more favorable to migration
then they later became. However, there is a minority school of thought that maintains that
H. erectus evolved in Asia. In any case the species survived in Asia until only 143,000 years
before the present, and was able to use fire.

Homo neanderthalensis

The species H. neandrithalensis (“Neanderthal Man”) takes its name from the mountain
valley near to Diisseldorf where fossil remains were discovered in 18567 The presence in
the Middle East of this successful and physically powerful species is probably the reason
why the first attempts of H. sapiens to leave Africa failed.

The Wikipedia article on Homo heidelbergensis states that “Neanderthals, Denisovans,
and modern humans are all considered to have descended from Homo heidelbergensis that
appeared around 700,000 years ago in Africa. Fossils have been recovered in Ethiopia,
Namibia and South Africa. Between 400,000 and 300,000 years ago a group of Homo
heidelbergensis migrated into Europe and West Asia via yet unknown routes and eventually
evolved into Neanderthals.”

Denisovans are eastern cousin of the Neanderthals, and the genes of both species have
been sequenced by Prof. Svante Paabo and his colleagues at the Max Planck Institute for
Evolutionary Anthropology. The results of these studies show that the genomes of modern
humans outside of Africa contain an appreciable amount of genetic information derived
from interbreeding with Neanderthals and Denisovans.

SEarlier fossils of H. neanderthalensis were discovered in Belgium in 1829, and in Gibraltar in 1848,
but the importance of these discoveries was not recognized.
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Figure 3.1: Awustralopithecus afarensis. One famous member of this species,
nicknames “Lucy”, was 1.1 meters tall and lived 3.2 million years ago.

Figure 3.2: Australopithecus afarensis: a hunting scene. Males of the species
are seen here using weapons and cooperative tactics.
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Figure 3.3: Homo habilis, “handy man”, was very apelike in size and appearance,
but used a more advanced toolkit than previous hominins.

Figure 3.4: Homo habilis is seen here making and using tools.
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Figure 3.5: Homo erectus left Africa, and spread throughout Eurasia, as far as
Georgia, Armenia, India, Sri Lanka, China and Indonesia.

Figure 3.6: Homo erectus using fire.
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3.5 Y-chromosomal DNA and mitochondrial DN A

Recent DNA studies have cast much light on human prehistory, and especially on the
story of how a small group of anatomically and behaviorally modern humans left Africa
and populated the remainder of the world. Two types of DNA have been especially useful
- Y-chromosomal DNA and mitochondrial DNA.

When we reproduce, the man’s sperm carries either an X chromosome or a Y chromo-
some. It is almost equally probable which of the two it carries. The waiting egg of the
mother has an X chromosome with complete certainty. When the sperm and egg unite to
form a fertilized egg and later an embryo, the YX combinations become boys while the
XX combinations become girls. Thus every male human carries a Y chromosome inherited
from his father, and in fact this chromosome exists in every cell of a male’s body.

Humans have a total of 23 chromosomes, and most of these participate in what might be
called the “genetic lottery” - part of the remaining 22 chromosomes come from the father,
and part from the mother, and it is a matter of chance which parent contributes which
chromosome. Because of this genetic lottery, no two humans are genetically the same,
except in the case of identical twins. This diversity is a great advantage, not only because
it provides natural selection variation on which to act, but also it because prevents parasites
from mimicking our cell-surface antigens and thus outwitting our immune systems. In fact
the two advantages of diversity just mentioned are so great that sexual reproduction is
almost universal among higher animals and plants.

Because of its special role in determining the sex of offspring, the Y chromosome is
exempted from participation in the genetic lottery. This makes it an especially interesting
object of study because the only changes that occur in Y chromosomes as they are handed
down between generations are mutations. These mutations are not only infrequent but they
also happen at a calculable rate. Thus by studying Y-chromosomal lineages, researchers
have been able not only to build up prehistoric family trees but also to assign dates to
events associated with the lineages.

The mutation M168 seems to have occurred just before the ancestral population of
anatomically and behaviorally modern humans left Africa, roughly 60,000 years ago. All
of the men who left Africa at that time carried this mutation. The descendents of this
small group, probably a single tribe, were destined to populate the entire world outside
Africa.

After M168, further mutations occurred, giving rise to the Y-chromosomal groups C,
D, E and F-R. Men carrying Y chromosomes of type C migrated to Central Asia, East Asia
and Australia/New Guinea. The D group settled in Central Asia, while men carrying Y
chromosomes of type E can be found today in East Asia, Sub-Saharan Africa, the Middle
East, West Eurasia, and Central Asia. Populations carrying Y chromosomes of types F-R
migrated to all parts of the world outside Africa. Those members of population P who
found their way to the Americas carried the mutation M242. Only indigenous men of the
Americas have Y chromosomes with M242.

Mitochondrial DNA is present in the bodies of both men and women, but is handed
on only from mother to daughter. The human family tree constructed from mutations in
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mitochondrial DNA is closely parallel to the tree constructed by studying Y chromosomes.
In both trees we see that only a single small group left Africa, and that the descendents
of this small group populated the remainder of the world. The mitochondrial groups Lla,
L1b, and L2 are confined to Sub-Saharan Africa, but by following the lineage L3 we see
a path leading out of Africa towards the population of the remainder of the world, as is
shown in the next figure.

While the unmutated L3 lineage remained in Africa, a slightly changed group of people
found their way out. It seems to have been a surprisingly small group, perhaps only a
single tribe. Their descendents populated the remainder of the the world. The branching
between the N and M lineages occurred after their exodus from Africa. All women in
Western Eurasia are daughters of the N line, while in Eastern Eurasia women are descended
from both the N and M lineages. Daughters of both N and M reached the Americas.

Mitochondrial DNA is also exempted from participation in the genetic lottery, but for
a different reason. Mitochondria were once free-living eubacteria of a type called alpha-
proteobacteria. These free-living bacteria were able perform oxidative phosphorylation,
i.e. they could couple the combustion of glucose to the formation of the high-energy
phosphate bond in ATP. When photosynthesis evolved, the earth’s atmosphere became
rich in oxygen, which was a deadly poison to most of the organisms alive at the time. Two
billion years ago, when atmospheric oxygen began to increase in earnest, many organisms
retreated into anaerobic ecological niches, while others became extinct; but some survived
the oxygen crisis by incorporating alpha-proteobacteria into their cells and living with
them symbiotically. Today, mitochondria living as endosymbionts in all animal cells, use
oxygen constructively to couple the burning of food with the synthesis of ATP. As a relic
of the time when they were free-living bacteria, mitochondria have their own DNA, which
contained within them rather than within the cell nuclei.

When a sperm and an egg combine, the sperm’s mitochondria are lost; and therefore
all of the mitochondria in the body of a human child come from his or her mother. Just
as Y-chromosomal DNA is passed essentially unchanged between generations in the male
lines of a family tree, mitochondrial DNA is passed on almost without change in the female
lines. The only changes in both cases are small and infrequent mutations. By estimating
the frequency of these mutations, researchers can assign approximate dates to events in
human prehistory.

On the female side of the human family tree, all lines lead back to a single woman,
whom we might call “Mitochondrial Eve”. Similarly, all the lines of the male family tree
lead back to a single man, to whom we can give the name “Y-Chromosomal Adam”. (“Eve”
and “Adam” were not married, however; they were not even contemporaries!)

But why do the female and male and family trees both lead back to single individuals?
This has to do with a phenomenon called “genetic drift”. Sometimes a man will have
no sons, and in that case, his male line will end, thus reducing the total number of Y-
chromosomes in the population. Finally, after many generations, all Y-chromosomes will
have dropped away through the ending of male lines except those that can be traced back
to a single individual. Similar considerations hold for female lines.

When did Y-Chromosomal Adam walk the earth? Peter Underhill and his colleagues
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Table 3.3: Events leading up to the dispersal of fully modern humans from Africa
(a model proposed by Sir Paul Mellars).

Years before present Event

150,000-200,000 BP  Initial emergence of anatomically modern
populations in Africa

110,000-90,000 BP Temporary dispersal of anatomically modern
populations (with Middle Paleolithic
technology) from Africa to southwest Asia,
associated with clear symbolic expression

80,000-70,000 BP Rapid climatic and environmental changes in
Africa

80,000-70,000 BP Major technological, economic and social
changes in south and east Africa

70,000-60,000 BP Major population expansion in Africa from
small source area

ca. 60,000 BP Dispersal of modern populations from Africa to
Eurasia

at Stanford University calculate that, on the basis of DNA evidence, Adam lived between
40,000 and 140,000 years before the present (BP). However, on the basis of other evidence
(for example the dating of archaeological sites in Australia) 40,000 years BP can be ruled
out as being much too recent. Similar calculations on the date of Mitochondrial Eve find
that she lived very approximately 150,000 years BP, but again there is a wide error range.
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Figure 3.7 Homo neandrithalensis. In 1997, Prof. Dr. Svante Paiabo and his
colleagues at the Max Planck Institute for Evolutionary Anthropology reported
their successful sequencing of Neanderthal mitochondrial DNA. Later they
sequenced the DNA of Denisovans, the eastern cousins of the Neanderthals.
They were also able to show that 3-5% of the DNA of humans living outside
Africa is shared with Neanderthals and Denisovans, indicating intermarriage,
or at least interbreeding.
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Figure 3.8: Homo neandrithalensis working happily in front of his dwelling. The
brain size of Neanderthals was larger than that of modern humans, but their
linguistic abilities may have been inferior to those of H. sapiens sapiens. The
Neanderthals survived in Spain until 40,000 years ago. They are, in a sense,
alive today, since their genes have been mixed with those of modern humans.

3.6 Exodus: Out of Africa

A model for the events leading up to the exodus of fully modern humans from Africa has
been proposed by Sir Paul Mellars of Cambridge University, and it is shown in Table 4.3.
In the article on which this table is based, Mellars calls our attention to archaeological
remains of anatomically modern humans at the sites of Skhul and Qafzeh in what is now
northern Israel. The burials have been dated as having taken place 110,000-90,000 BP,
and they show signs of cultural development, including ceremonial arrangement with arms
folded, and sacrificial objects such as pierced shell ornaments. This early exodus was short-
lived, however, probably because of competition with the long-established Neanderthal
populations in the region.

In Mellars’ model, rapid climatic and environmental changes took place in Africa during
the period 80,000-70,000 BP. According to the Toba Catastrophe Theoryﬂ the climatic
changes in Mellers’ model were due to the eruption of a supervolcano at the site of what
is now Lake Toba in Indonesia. This eruption, one of the largest known to us, took place
ca. 73,000 BP, and plunged the earth into a decade of extreme cold, during which the
population of our direct ancestors seem to have been reduced to a small number, perhaps

6The Toba Catastrophe Theory is supported by such authors as Ann Gibons, Michael R. Rampino and
Steven Self
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as few as 10,000 individuald’}

The survivors of the Toba Catastrophe may have been selected for improved linguistic
ability, which gave them a more advanced culture than their contemporaries. Mellers
points to archaeological and genetic evidence that a major population expansion of the
L2 and L3 mitochondrial lineages took place in Africa 70,000-60,000 BP, starting from a
small source region in East Africa, and spreading west and south. The expanding L2 and
L3 populations were characterized by advanced cultural features such as upper paleolithic
technology, painting and body ornaments.

All researchers agree that it was a small group of the L3 mitochondrial lineage that
made the exodus from Africa, but there is some disagreement about the date of this event.
These differences reflect the intrinsic inaccuracy of the genetic dating methods, but all
researchers agree that the group passing out of Africa was remarkably small, especially
when we reflect that the entire population of the remainder of the world is descended from
them.

The small group of modern humans leaving Africa probably crossed the Red Sea at a
its narrowest pointﬂ The men in this tiny but brave group of explorers carried with them
the Y-chromosomal mutation M168, while the women were of the mitochondrial lineage
L3. Shortly after they crossed the Red Sea (like Moses and his followers), a mutation
occurred and two new mitochondrial lineages were established, M and N. All women today
in Western Eurasia are daughters of the N 1ineagef|7 while the M lineage spread to the
entire world outside Africa. The mitochondrial lineages M and N had further branches,
and daughters of the A, B, C, D and X lineages passed over a land bridge which linked
Siberia to Alaska during the period 22,000-7,000 BP, thus reaching the Americas.

7Additional support to the Toba Catastrophe Theory comes from DNA studies of mammals, such as
chimpanzees, orangutans, macques, cheetahs, tigers and gorillas. These mammals also seem, on the basis
of DNA studies, to have been reduced to very small populations at the time of the Toba eruption.

8Today this narrow place is sometimes called “Gate of Grief” because many shipwrecks take place there.

90f course, this broad statement does not take into account the movements of peoples that have taken
place during historic times.
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Figure 3.9: The spread of Homo sapiens

Figure 3.10: Domestication of the dog
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Figure 3.11: Paleolithic cave paintings as old as 40,000 years before the present
have been found in many parts of the world. Those shown here are from the
Dordogne region of France. Perhaps these paintings were made to ensure the
success of hunts for the animals shown.

Figure 3.12: Another painting from the same cave in France.
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Figure 3.13: Cave paintings made using human hands as stencils. The artist’s
mouth was filled with paint, and this was blown onto the rock.

Figure 3.14: Cave paintings showing the use of bows and arrows in hunting.
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Figure 3.15: Paleolithic stone tools

Figure 3.16: Neolithic stone tools were more advanced. Stone axes were highly
polished and had holes to accommodate the hafts.

Figure 3.17: A Neolithic scene.
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Figure 3.18: About 10,000 years ago, during a period of exceptional climatic sta-
bility, agriculture was invented independently in several parts of the world. It
spread rapidly, revolutionizing human life, and making much larger population
densities possible. Here we see agriculture in ancient Egypt. It also supported
advanced civilizations in Mesopotamia, China and India, as well as in Central
and South America.
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Chapter 4

AGRICULTURE

4.1 Accelerating cultural evolution

An acceleration of human cultural development seems to have begun approximately 40,000
years ago. The first art objects date from that period, as do migrations which ultimately
took modern man across the Bering Strait to the western hemisphere. A land bridge
extending from Siberia to Alaska is thought to have been formed approximately 70,000
years ago, disappearing again roughly 10,000 years before the present. Cultural and genetic
studies indicate that migrations from Asia to North America took place during this period.
Shamanism [[] which is found both in Asia and the new world, as well as among the Sami
(Lapps) of northern Scandinavia, is an example of the cultural links between the hunting
societies of these regions.

In the caves of Spain and southern France are the remains of vigorous hunting cul-
tures which flourished between 30,000 and 10,000 years ago. The people of these upper
Paleolithic cultures lived on the abundant cold-weather game which roamed the southern
edge of the ice sheets during the Wurm glacial period: huge herds of reindeer, horses and
wild cattle, as well as mammoths and wooly rhinos. The paintings found in the Dordogne
region of France, for example, combine decorative and representational elements in a man-
ner which contemporary artists might envy. Sometimes among the paintings are stylized
symbols which can be thought of as the first steps towards writing.

In this period, not only painting, but also tool-making and weapon-making were highly
developed arts. For example, the Solutrian culture, which flourished in Spain and southern
France about 20,000 years ago, produced beautifully worked stone lance points in the shape
of laurel leaves and willow leaves. The appeal of these exquisitely pressure-flaked blades
must have been aesthetic as well as functional. The people of the Solutrian culture had
fine bone needles with eyes, bone and ivory pendants, beads and bracelets, and long bone
pins with notches for arranging the hair. They also had red, yellow and black pigments

L A shaman is a special member of a hunting society who, while in a trance, is thought to be able to
pass between the upper world, the present world, and the lower world, to cure illnesses, and to insure the
success of a hunt.
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Figure 4.1: A cave painting showing a domesticated dog.

for painting their bodies. The Solutrian culture lasted for 4,000 years. It ended in about
17,000 B.C. when it was succeeded by the Magdalenian culture. Whether the Solutrian
people were conquered by another migrating group of hunters, or whether they themselves
developed the Magdalenian; culture we do not know.

Wikipedia states that “The dog diverged from a now-extinct population of wolves imme-
diately before the Last Glacial Maximum, when much of Eurasia was a cold, dry mammoth
steppe biome.... The archaeological record shows the first undisputed dog remains buried
beside humans 14,700 years ago, with disputed remains occurring 36,000 years ago. These
dates imply that the earliest dogs arose in the time of human hunter-gatherers and not
agriculturalists. The dog was the first species to be domesticated.”
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Figure 4.2: The family tree of dogs, showing their descent from the grey wolf.

Figure 4.3: Neolithic humans hunting a mammoth with the help of dogs.
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4.2 Early agriculture in the Middle East

Beginning about 10,000 B.C., the way of life of the hunters was swept aside by a great
cultural revolution: the invention of agriculture. The earth had entered a period of un-
usual climatic stability, and this may have helped to make agriculture possible. The first
agricultural villages date from this time, as well as the earliest examples of pottery. Dogs
and reindeer were domesticated, and later, sheep and goats. Radio-carbon dating shows
that by 8,500 B.C., people living in the caves of Shanidar in the foothills of the Zagros
mountains in Iran had domesticated sheep. By 7,000 B.C., the village farming community
at Jarmo in Iraq had domesticated goats, together with barley and two different kinds of
wheat.

Starting about 8000 B.C., rice came under cultivation in East Asia. This may represent
an independent invention of agriculture, and agriculture may also have been invented
independently in the western hemisphere, made possible by the earth’s unusually stable
climate during this period. At Jericho, in the Dead Sea valley, excavations have revealed a
prepottery neolithic settlement surrounded by an impressive stone wall, six feet wide and
twelve feet high. Radiocarbon dating shows that the defenses of the town were built about
7,000 B.C. Probably they represent the attempts of a settled agricultural people to defend
themselves from the plundering raids of less advanced nomadic tribes.

Starting in western Asia, the neolithic agricultural revolution swept westward into Eu-
rope, and eastward into the regions that are now Iran and India. By 4,300 B.C., the
agricultural revolution had spread southwest to the Nile valley, where excavations along
the shore of Lake Fayum have revealed the remains of grain bins and silos. The Nile carried
farming and stock-breeding techniques slowly southward, and wherever they arrived, they
swept away the hunting and food-gathering cultures. By 3,200 B.C. the agricultural rev-
olution had reached the Hyrax Hill site in Kenya. At this point the southward movement
of agriculture was stopped by the swamps at the headwaters of the Nile. Meanwhile, the
Mediterranean Sea and the Danube carried the revolution westward into Europe. Between
4,500 and 2,000 B.C. it spread across Europe as far as the British Isles and Scandinavia.

However, western Asia was only one of the places where the agricultural revolution took
place. Wikipedia states that “ Agriculture began independently in different parts of the
globe, and included a diverse range of taxa. At least eleven separate regions of the Old
and New World were involved as independent centers of origin.

“Wild grains were collected and eaten from at least 20,000 BC. From around 9,500 BC,
the eight Neolithic founder crops - emmer wheat, einkorn wheat, hulled barley, peas, lentils,
bitter vetch, chick peas, and flax - were cultivated in the Levant. Rice was domesticated
in China between 11,500 and 6,200 BC, followed by mung, soy and azuki beans. Pigs were
domesticated in Mesopotamia around 11,000 BC, followed by sheep between 11,000 and
9,000 BC. Cattle were domesticated from the wild aurochs in the areas of modern Turkey
and Pakistan around 8,500 BC. Sugarcane and some root vegetables were domesticated in
New Guinea around 7,000 BC. Sorghum was domesticated in the Sahel region of Africa
by 5,000 BC. In the Andes of South America, the potato was domesticated between 8,000
and 5,000 BC, along with beans, coca, llamas, alpacas, and guinea pigs. Bananas were
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Figure 4.5: Early agriculture in Egypt: Threshing
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Figure 4.6: Pigs were domesticated in Mesopotamia around 11,000 BC.

cultivated and hybridized in the same period in Papua New Guinea. In Mesoamerica, wild
teosinte was domesticated to maize by 4,000 BC. Cotton was domesticated in Peru by
3,600 BC. Camels were domesticated late, perhaps around 3,000 BC.”
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Figure 4.7: Domestication of sheep.

4.3 Rice cultivation in Asia

Wikipedia states that “Excavations at Kuahuqiao, the earliest known Neolithic site in
eastern China, have documented rice cultivation 7,700 years ago. Approximately half of
the plant remains belonged to domesticated japonica species, whilst the other half were
wild types of rice. It is possible that the people at Kuahuqgiao also cultivated the wild
type. Finds at sites of the Hemudu Culture (¢.5500-3300 BCE) in Yuyao and Banpo near
Xi’an include millet and spade-like tools made of stone and bone. Evidence of settled rice
agriculture has been found at the Hemudu site of Tianluoshan (5000-4500 BCE), with rice
becoming the backbone of the agricultural economy by the Majiabang culture in southern
China.”
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Figure 4.9: Ancient rice terraces in Yuanyang, Yunnan, a province in southern
China.
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4.4 Agriculture in the western hemisphere

During a glacial period between 20,000 and 10,000 years before the present, there was a
land bridge across the Bering Strait. There is evidence that humans crossed this land
bridge from Siberia and followed a coastal route past the glaciated regions of what is now
Canada, finally reaching South America. Humans were able to build boats at that time,
as evidenced by traces of very early settlements on islands off the coast of South America.

In a May 24, 2017 article in Science, Lizzie Wade wrote:

“About 600 kilometers north of Lima, an imposing earthen mound looms over the sea.
People began building the ceremonial structure, called Huaca Prieta, about 7800 years ago.
But according to a new study, the true surprise lies buried deep beneath the 30-meter-tall
mound: stone tools, animal bones, and plant remains left behind by some of the earliest
known Americans nearly 15,000 years ago. That makes Huaca Prieta one of the oldest
archaeological sites in the Americas and suggests that the region’s first migrants may have
moved surprisingly slowly down the coast.

“The evidence of early human occupation stunned Tom Dillehay, an archaeologist at
Vanderbilt University in Nashville who led the new study. Initially, he was interested in
examining the mound itself. But geologists on his team wanted to study the landform
under the mound, so ‘we just kept going down,” he says. The deepest pit, which took 5
years to excavate, reached down 31 meters. Shockingly, those deep layers contained telltale
signs of human occupation, Dillehay’s team reports today in Science Advances: evidence
of hearth fires, animal bones, plant remains, and simple but unmistakable stone tools.
Radiocarbon dates from charcoal place the earliest human occupation at nearly 15,000
years ago.

“That’s made some researchers say Huaca Prieta should join the small but growing
list of pre-14,000-year-old sites that have revolutionized scientists’ vision of the earliest
Americans. Archaeologists used to think that people walked from Siberia through an ice-
free passage down Alaska and Canada, reaching the interior of the United States about
13,000 years ago. In recent years, however, well documented earlier sites like Chile’s Monte
Verde have convinced most archaeologists that humans made it deep into the Americas by
14,500 years ago, meaning that they would have had to cross Canada long before an ice-
free corridor existed. That would have left them with one logical route into the Americas:
down the Pacific coast. But direct evidence for such a migration is lacking.”

Another site that shows evidence of early human presence is Piki Mach’ay cave in Peru
Radiocarbon dates from this cave give a human presence ranging from 22,200 to 14,700
years ago, but this evidence has been disputed. Wikipedia states that “Piki Mach’ay
yielded some of the oldest plant remains in Peru, including an 11,000 year old bottle
gourd. Strata from later periods at the site revealed fishtail points, manos, and metates.
Plant remains indicate that, before 3,000 years BCE, amaranth, cotton, gourds, lucuma,
quinoa, and squash were cultivated in the Ayacucho Basin before 3,000 years BCE. By
4,000 years BCE corn (Zea mays) and common beans were grown. Chili remains date
from 5,500 to 4,300 years BCE. The large amounts of guinea pig bones suggest possible
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Figure 4.10: The “three sisters”, maize, squash and beans, traditionally grown
by tribes of the first people in North America.

domestication, and llamas may have been domesticated by 4,300 to 2,800 years BCE.”
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Figure 4.11: An artist’s guess at what the inhabitants of Piki Mach’ay cave in
Peru might have looked like.

4.5 Peru gives potatoes to the world

Wikipedia states that “Cultivation of potatoes in South America may go back 10,000 years,
yet the tubers do not preserve well in archaeological record, and there are problems with
exact identification of those that are found... In the Altiplano, potatoes provided the
principal energy source for the Inca Empire, its predecessors, and its Spanish successor...
Potato was the staple food of most Pre-Columbian Mapucheﬂ ‘specially in the southern
and coastal [Mapuche] territories where maize did not reach maturity’”

2The Mapuche are a group of indigenous inhabitants of south-central Chile and southwestern Argentina,
including parts of present-day Patagonia.
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Figure 4.12: In the mountainous regions of Peru, the ancient Incas built terraces
for the cultivation of potatoes.

Figure 4.13: Sir Walter Raleigh presented potatoes to Queen Elizabeth 1.
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Figure 4.15: Vincent Van Gogh’s painting, “The Potato Eaters”.
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4.6 The threat of widespread famine

“Unless progress with agricultural yields remains very strong, the next century
will experience human misery that, on a sheer numerical scale, will exceed ev-
erything that has come before”

Nobel Laureate Norman Borlaug speaking of a global food crisis in the 21st century

As glaciers melt in the Himalayas, depriving India and China of summer water supplies;
as sea levels rise, drowning the fertile rice fields of Viet Nam and Bangladesh; as drought
threatens the productivity of grain-producing regions of North America; and as the end of
the fossil fuel era impacts modern high-yield agriculture, there is a threat of wide-spread
famine. There is a danger that the 1.5 billion people who are undernourished today will
not survive an even more food-scarce future.

People threatened with famine will become refugees, desperately seeking entry into
countries where food shortages are less acute. Wars, such as those currently waged in the
Middle East, will add to the problem.

What can we do to avoid this crisis, or at least to reduce its severity? We must urgently
address the problem of climate change; and we must shift money from military expenditure
to the support of birth control programs and agricultural research. We must also replace
the institution of war by a system of effective global governance and enforcible international
laws.

Optimum population in the distant future

What is the optimum population of the world? It is certainly not the maximum number
that can be squeezed onto the globe by eradicating every species of plant and animal that
cannot be eaten. The optimum global population is one that can be supported in comfort,
equality and dignity - and with respect for the environment.

Figure 4.16: Today, glaciers are melting rapidly many places in the world. The
summer water supplies of both India and China are threatened.
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Figure 4.17: Starting with the neolithic agricultural revolution and the invention
of writing, human culture began to develop with explosive speed. This figure
shows the estimated human population as a function of time during the last
4,000 years. The dots are population estimates in billions, while the solid curve
is the hyperbola p = ¢/(2020 — y), where p is the global human population y
is the year, and ¢ = 234000. The curve reflects an explosively accelerating
accumulation of information. Culturally transmitted techniques of agriculture
allowed a much greater density of population than was possible for hunter-
gatherers. The growth of population was further accelerated by the invention
of printing and by the industrial and scientific developments which followed
from this invention.
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Figure 4.18: Population growth and fossil fuel use, seen on a time-scale of several
thousand years. The dots are population estimates in millions from the US
Census Bureau. Fossil fuel use appears as a spike-like curve, rising from almost
nothing to a high value, and then falling again to almost nothing in the space
of a few centuries. When the two curves are plotted together, the explosive
rise of global population is seen to be simultaneous with, and perhaps partially
driven by, the rise of fossil fuel use. This raises the question of whether the
world’s population is headed for a crash when the fossil fuel era has ended.
(Author’s own graph)
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In 1848 (when there were just over one billion people in the world), John Stuart Mill
described the optimal global population in the following words:

“The density of population necessary to enable mankind to obtain, in the greatest
degree, all the advantages of cooperation and social intercourse, has, in the most populous
countries, been attained. A population may be too crowded, although all be amply supplied
with food and raiment.”

“... Nor is there much satisfaction in contemplating the world with nothing left to the
spontaneous activity of nature; with every rood of land brought into cultivation, which is
capable of growing food for human beings; every flowery waste or natural pasture plowed
up, all quadrupeds or birds which are not domesticated for man’s use exterminated as his
rivals for food, every hedgerow or superfluous tree rooted out, and scarcely a place left
where a wild shrub or flower could grow without being eradicated as a weed in the name
of improved agriculture. If the earth must lose that great portion of its pleasantness which
it owes to things that the unlimited increase of wealth and population would extirpate
from it, for the mere purpose of enabling it to support a larger, but not better or happier
population, I sincerely hope, for the sake of posterity, that they will be content to be
stationary, long before necessity compels them to it.”E]

Dennis Meadows, one of the authors of Limits to Growth, stated recently (in a private
conversation) that the sustainable human population in the distant future may be about
2 billion people.

Has the number of humans in the world already exceeded the earth’s sustainable lim-
its? Will the global population of humans crash catastrophically after having exceeded the
carrying capacity of the environment? There is certainly a danger that this will happen
- a danger that the 21st century will bring very large scale famines to vulnerable parts
of the world, because modern energy-intensive agriculture will be dealt a severe blow by
prohibitively high petroleum prices, and because climate change will reduce the world’s
agricultural output. When the major glaciers in the Himalayas have melted, they will no
longer be able to give India and China summer water supplies; rising oceans will drown
much agricultural land; and aridity will reduce the output of many regions that now pro-
duce much of the world’s grain. Falling water tables in overdrawn aquifers, and loss of
topsoil will add to the problem. We should be aware of the threat of a serious global food
crisis in the 21st century if we are to have a chance of avoiding it.

The term ecological footprint was introduced by William Rees and Mathis Wackernagel
in the early 1990’s to compare demands on the environment with the earth’s capacity to
regenerate. In 2005, humanity used environmental resources at such a rate that it would
take 1.3 earths to renew them. In other words, we have already exceeded the earth’s
carrying capacity. Since eliminating the poverty that characterizes much of the world
today will require more resources per capita, rather than less. it seems likely that in the
era beyond fossil fuels, the optimum global population will be considerably less than the
present population of the world.

3John Stuart Mill, Principles of Political Economy, With Some of Their Applications to Social Philos-
ophy, (1848).
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4.7 Population growth and the Green Revolution

Limitations on cropland

In 1944 the Norwegian-American plant geneticist Norman Borlaug was sent to Mexico
by the Rockefeller Foundation to try to produce new wheat varieties that might increase
Mexico’s agricultural output. Borlaug’s dedicated work on this project was spectacularly
successful. He remained with the project for 16 years, and his group made 6,000 individual
crossings of wheat varieties to produce high-yield disease-resistant strains.

In 1963, Borlaug visited India, bringing with him 100 kg. of seeds from each of his most
promising wheat strains. After testing these strains in Asia, he imported 450 tons of the
Lerma Rojo and Sonora 64 varieties - 250 tons for Pakistan and 200 for India. By 1968,
the success of these varieties was so great that school buildings had to be commandeered
to store the output. Borlaug’s work began to be called a “Green Revolution”. In India,
the research on high-yield crops was continued and expanded by Prof. M.S. Swaminathan
and his coworkers. The work of Green Revolution scientists, such Norman Borlaug and
M.S. Swaminathan, has been credited with saving the lives of as many as a billion people.

Despite these successes, Borlaug believes that the problem of population growth is still
a serious one. “Africa and the former Soviet republics”, Borlaug states, “and the Cerradd,
are the last frontiers. After they are in use, the world will have no additional sizable blocks
of arable land left to put into production, unless you are willing to level whole forests,
which you should not do. So, future food-production increases will have to come from
higher yields. And though I have no doubt that yields will keep going up, whether they
can go up enough to feed the population monster is another matter. Unless progress with
agricultural yields remains very strong, the next century will experience human misery
that, on a sheer numerical scale, will exceed the worst of everything that has come before.”

With regard to the prospect of increasing the area of cropland, a report by the United
Nations Food and Agricultural Organization ( Provisional Indicative World Plan for Agri-
cultural Development, FAO, Rome, 1970) states that “In Southern Asia,... in some coun-
tries of Eastern Asia, in the Near East and North Africa... there is almost no scope for
expanding agricultural area... In the drier regions, it will even be necessary to return to
permanent pasture the land that is marginal and submarginal for cultivation. In most of
Latin America and Africa south of the Sahara, there are still considerable possibilities for
expanding cultivated areas; but the costs of development are high, and it will often be more
economical to intensify the utilization of areas already settled.” Thus there is a possibility
of increasing the area of cropland in Africa south of the Sahara and in Latin America, but
only at the cost of heavy investment and at the additional cost of destruction of tropical
rain forests.

Rather than an increase in the global area of cropland, we may encounter a future
loss of cropland through soil erosion, salination, desertification, loss of topsoil, depletion

4 The Cerrado is a large savanna region of Brazil.
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Figure 4.19: Professor M.S. Swaminathan, father of the Green Revolution in
India. (Open and Shut7)

Figure 4.20: Norman Borlaug and agronomist George Harrer in 1943. (Human
Wrongs Watch)
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Total world production of coarse grain, 1961-2004
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Figure 4.21: This graph shows the total world production of coarse grain between
1960 and 2004. Because of high-yield varieties, the yield of grain increased
greatly. Notice, however, that the land under cultivation remained almost
constant. High-yield agriculture depends on large inputs of fossil fuel energy
and irrigation, and may be difficult to maintain in the future. (FAO)
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of minerals in topsoil, urbanization and failure of water supplies. In China and in the
southwestern part of the United States, water tables are falling at an alarming rate. The
Ogallala aquifer (which supplies water to many of the plains states in the central and
southern parts of the United States) has a yearly overdraft of 160%.

In the 1950’s, both the U.S.S.R and Turkey attempted to convert arid grasslands into
wheat farms. In both cases, the attempts were defeated by drought and wind erosion, just
as the wheat farms of Oklahoma were overcome by drought and dust in the 1930’s.

If irrigation of arid lands is not performed with care, salt may be deposited, so that
the land is ruined for agriculture. This type of desertification can be seen, for example, in
some parts of Pakistan. Another type of desertification can be seen in the Sahel region of
Africa, south of the Sahara. Rapid population growth in the Sahel has led to overgrazing,
destruction of trees, and wind erosion, so that the land has become unable to support even
its original population.

Especially worrying is a prediction of the International Panel on Climate Change con-
cerning the effect of global warming on the availability of water: According to Model A1l of
the IPCC, global warming may, by the 2050’s, have reduced by as much as 30% the water
available in large areas of world that now a large producers of grain

Added to the agricultural and environmental problems, are problems of finance and
distribution. Famines can occur even when grain is available somewhere in the world,
because those who are threatened with starvation may not be able to pay for the grain, or
for its transportation. The economic laws of supply and demand are not able to solve this
type of problem. One says that there is no “demand” for the food (meaning demand in
the economic sense), even though people are in fact starving.
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Chapter 5

WRITING. PAPER AND
PRINTING

5.1 Mesopotamia

In Mesopotamia (which in Greek means “between the rivers”), the settled agricultural
people of the Tigris and Euphrates valleys evolved a form of writing. Among the earliest
Mesopotamian writings are a set of clay tablets found at Tepe Yahya in southern Iran, the
site of an ancient Elamite trading community halfway between Mesopotamia and India.
The Elamite trade supplied the Sumarian civilization of Mesopotamia with silver, cop-
per, tin, lead, precious gems, horses, timber, obsidian, alabaster and soapstone. The prac-
tical Sumerians and Elamites probably invented writing as a means of keeping accounts.

The tablets found at Tepe Yahya are inscribed in proto-Elamite, and radio-carbon
dating of organic remains associated with the tablets shows them to be from about 3,600
B.C.. The inscriptions on these tablets were made by pressing the blunt and sharp ends
of a stylus into soft clay. Similar tablets have been found at the Sumerian city of Susa at
the head of the Tigris River.

In about 3,100 B.C. the cuneiform script was developed, and later Mesopotamian tablets
are written in cuneiform, which is a phonetic script where the symbols stand for syllables.
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Figure 5.1: Sumerian writing

5.2 Egypt

The Egyptian hieroglyphic (priest writing) system began its development in about 4,000
B.C.. At that time, it was pictorial rather than phonetic. However, the Egyptians were in
contact with the Sumerian civilization of Mesopotamia, and when the Sumerians developed
a phonetic system of writing in about 3,100 B.C., the Egyptians were quick to adopt the
idea. In the cuneiform writing of the Sumerians, a character stood for a syllable. In
the Egyptian adaptation of this idea, most of the symbols stood for combinations of two
consonants, and there were no symbols for vowels. However, a few symbols were purely
alphabetic, i.e. they stood for sounds which we would now represent by a single letter. This
was important from the standpoint of cultural history, since it suggested to the Phoenicians
the idea of an alphabet of the modern type.

In Sumer, the pictorial quality of the symbols was lost at a very early stage, so that
in the cuneiform script the symbols are completely abstract. By contrast, the Egyptian
system of writing was designed to decorate monuments and to be impressive even to an
illiterate viewer; and this purpose was best served by retaining the elaborate pictographic
form of the symbols.
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Figure 5.2: The Phoenician alphabet

Figure 5.3: Hieroglyphics
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5.3 China

Writing was developed at a very early stage in Chinese history, but the system remained a
pictographic system, with a different character for each word. A phonetic system of writing
was never developed.

The failure to develop a phonetic system of writing had its roots in the Chinese imperial
system of government. The Chinese empire formed a vast area in which many different
languages were spoken. It was necessary to have a universal language of some kind in order
to govern such an empire. The Chinese written language solved this problem admirably.

Suppose that the emperor sent identical letters to two officials in different districts.
Reading the letters aloud, the officials might use entirely different words, although the
characters in the letters were the same. Thus the Chinese written language was a sort
of “Esperanto” which allowed communication between various language groups, and its
usefulness as such prevented its replacement by a phonetic system.

The disadvantages of the Chinese system of writing were twofold: First, it was difficult
to learn to read and write; and therefore literacy was confined to a small social class whose
members could afford a prolonged education. The system of civil-service examinations
made participation in the government dependant on a high degree of literacy; and hence the
old, established scholar-gentry families maintained a long-term monopoly on power, wealth
and education. Social mobility was possible in theory, since the civil service examinations
were open to all, but in practice, it was nearly unattainable.

The second great disadvantage of the Chinese system of writing was that it was un-
suitable for printing with movable type. An “information explosion” occurred in the west
following the introduction of printing with movable type, but this never occurred in China.
It is ironical that although both paper and printing were invented by the Chinese, the full
effect of these immensely important inventions bypassed China and instead revolutionized
the west.

Figure 5.4: Very early Chinese writing on a bone
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5.4 The Americas

The Mayan system of writing is thought to have been invented in about 700 B.C., and
this invention is believed to be entirely independent of the invention of writing elsewhere.
Some of the Mayan glyphs represented entire words, but the could also represent syllables.

Knotted string systems of keeping records were used by the Andean peoples of South
America, especially by the Inca civilization. In the Incan language collections of knotted
strings were known as quipus or talking knots. Quipus could have only a few, or as many
as 2000 knotted strings.

Belts made from shell beads (wampum) were used by the natives peoples of North
America, both as currency and as a means of recording events.

Figure 5.6: Mayan writing.
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5.5 The invention of paper

The ancient Egyptians were the first to make books. As early as 4,000 B.C., they began
to make books in the form of scrolls by cutting papyrus reeds into thin strips and pasting
them into sheets of double thickness. The sheets were glued together end to end, so that
they formed a long roll. The rolls were sometimes very long indeed. For example, one roll,
which is now in the British Museum, is 17 inches wide and 135 feet long.

(Paper of the type which we use today was not invented until 105 A.D.. This enormously
important invention was made by a Chinese eunuch named Tsai Lun. The kind of paper
invented by Tsai Lun could be made from many things: for example, bark, wood, hemp,
rags, etc.. The starting material was made into a pulp, mixed together with water and
binder, spread out on a cloth to partially dry, and finally heated and pressed into thin
sheets. The art of paper-making spread slowly westward from China, reaching Baghdad
in 800 A.D.. It was brought to Europe by the crusaders returning from the Middle East.
Thus paper reached Europe just in time to join with Giitenberg’s printing press to form the
basis for the information explosion which has had such a decisive effect on human history.)

Many centers of paper production were established throughout the Muslim world, and
their techniques were eventually transmitted to Christian Europe. Not only was paper
convenient to use, transport, and store, it was, most importantly, considerably cheaper
than papyrus and parchment, probably partly because of the use of recycled rags as raw
material in its manufacture. Whereas an early Qur’an copy on parchment is reckoned
to have required the skins of about 300 sheep, an equivalent amount of paper could be
produced much more rapidly, in much greater quantities, and at much lower cost. This
transformed the economics of book production, and made possible a greatly increased
production of manuscript books, on a scale which was unprecedented and unmatched in
Europe at that time.

The career of Leonardo da Vinci illustrates the first phase of the “information explosion”
which has produced the modern world: During Leonardo’s lifetime, inexpensive paper was
being manufactured in Europe, and it formed the medium for Leonardo’s thousands of
pages of notes. His notes and sketches would never have been possible if he had been
forced to use expensive parchment as a medium. On the other hand, the full force of
Leonardo’s genius and diligence was never felt because his notes were not printed.

Copernicus, who was a younger contemporary of Leonardo, had a much greater effect
on the history of ideas, because his work was published. Thus, while paper alone made a
large contribution to the information explosion, it was printing combined with paper which
had an absolutely decisive and revolutionary impact: The modern scientific era began with
the introduction of printing.



5.5. THE INVENTION OF PAPER 179

Figure 5.7: Papyrus

Figure 5.8: Paper is a Chinese invention
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CARTIERA OVERO PISTOGIO CHE
“EATA LE STRAZZE PI!‘PAI LA CARTA.
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Figure 5.9: Italian paper-mill, probably from the 16th century.
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Figure 5.10: The impact of Leonardo da Vinci’s genius would have been far
greater if his thousands of pages of notes had been printed.
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5.6 Printing

It was during the T ang period that the Chinese made an invention of immense importance
to the cultural evolution of mankind. This was the invention of printing. Together with
writing, printing is one of the key inventions which form the basis of human cultural
evolution.

Printing was invented in China in the 8th or 9th century A.D., probably by Buddhist
monks who were interested in producing many copies of the sacred texts which they had
translated from Sanskrit. The act of reproducing prayers was also considered to be meri-
torious by the Buddhists.

The Chinese had for a long time followed the custom of brushing engraved official seals
with ink and using them to stamp documents. The type of ink which they used was made
from lamp-black, water and binder. In fact, it was what we now call “India ink”. However,
in spite of its name, India ink is a Chinese invention, which later spread to India, and from
there to Europe.

We mentioned that paper of the type which we now use was invented in China in the
first century A.D.. Thus, the Buddhist monks of China had all the elements which they
needed to make printing practical: They had good ink, cheap, smooth paper, and the
tradition of stamping documents with ink-covered engraved seals. The first block prints
which they produced date from the 8th century A.D.. They were made by carving a block
of wood the size of a printed page so that raised characters remained, brushing ink onto
the block, and pressing this onto a sheet of paper.

The oldest known printed book, the “Diamond Sutra”, is dated 868 A.D.., and it
consists of only six printed pages. In was discovered in 1907 by an English scholar who
obtained permission from Buddhist monks in Chinese Turkestan to open some walled-up
monastery rooms, which were said to have been sealed for 900 years. The rooms were
found to contain a library of about 15,000 manuscripts, among which was the Diamond
Sutra.

Block printing spread quickly throughout China, and also reached Japan, where wood-
block printing ultimately reached great heights in the work of such artists as Hiroshige
and Hokusai. The Chinese made some early experiments with movable type, but movable
type never became popular in China, because the Chinese written language contains 10,000
characters. However, printing with movable type was highly successful in Korea as early
as the 15th century A.D..

The unsuitability of the Chinese written language for the use of movable type was the
greatest tragedy of the Chinese civilization. Writing had been developed at a very early
stage in Chinese history, but the system remained a pictographic system, with a different
character for each word. A phonetic system of writing was never developed.

The failure to develop a phonetic system of writing had its roots in the Chinese imperial
system of government. The Chinese empire formed a vast area in which many different
languages were spoken. It was necessary to have a universal language of some kind in order
to govern such an empire. The Chinese written language solved this problem admirably.

Suppose that the emperor sent identical letters to two officials in different districts.
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Figure 5.11: The Diamond Sutra, 868 A.D., is the first known printed book.

Reading the letters aloud, the officials might use entirely different words, although the
characters in the letters were the same. Thus the Chinese written language was a sort
of “Esperanto” which allowed communication between various language groups, and its
usefulness as such prevented its replacement by a phonetic system.

The invention of block printing during the T’ang dynasty had an enormously stimulat-
ing effect on literature, and the T ang period is regarded as the golden age of Chinese lyric
poetry. A collection of T’ang poetry, compiled in the 18th century, contains 48,900 poems
by more than 2,000 poets.

5.7 Islamic civilization and printing

Muslims in Egypt and probably elsewhere were using printing to mass-produce texts as
early as the 10th century. Dozens of examples of their output are preserved in museums
and libraries, but have, until recently, been overlooked and neglected by scholars. This phe-
nomenon is yet another example of the 1000-year missing history of science and technology.

It is, however, true that Muslims did not use printing to produce books, nor extended
texts in any form, until the 18th century. This challenge was taken up by Europeans
from the 15th century onwards, and it would not have been possible there, without the
availability of another gift from the Muslims, paper, which had earlier reached Europe from
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Figure 5.12: A handwritten Islamic manuscript: Qazwini, ’Ajaib al-makhluqat,
MS probably from Mosul, ca.1305. British Library.
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the Muslim world, via Spain and Italy.
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5.8 Gutenberg

Johannes Gensfleisch zur Laden zum Gutenberg (c.1400-1468) was born in the German
city of Mainz. He was the youngest son of an upper-class merchant, Friele Gensfleisch zur
Laden, whose long-established family traced its roots back to the 13th century.

Johannes Gutenberg was educated as a goldsmith and blacksmith, and may also have
attended the University of Erfurt. In 1440, while he was living in Strassburg. he is said to
have perfected and unveiled his system of printing with movable type.

By 1448, he was back in Mainz, where he took a loan from his brother-on-law to
meet the expenses of setting up a printing press.In 1450, the press was in operation, and
Gutenberg took a further loan, 800 guilders, from the moneylender Johann Fust. Peter
Schoffer, who became Fust’s son-in-law also joined the enterprise, and is believed to have
designed the type faces.

Among the many technical innovations introduced by Gutenberg are the invention of
a process for mass-producing movable type; the use of oil-based ink for printing books;
adjustable molds; mechanical movable type; and the use of a wooden printing press similar
to the agricultural screw presses of the period. The alloy which he used was a mixture of
lead, tin, and antimony that melted at a relatively low temperature for faster and more
economical casting, cast well, and created a durable type. The combination of all these
elements made the mass production of books both practical and economically feasible.

Gutenberg’s greatest artistic achievement was his printed Bible, but this project also
cost so much that it left him with debts of more than 20,000 guilders. A court order gave
Fust control of the Bible printing project, and half of the printed Bibles.

Although he had suffered bankruptcy, the aging Gutenberg’s greatness was acknowl-
edged in 1465. He was given the tithe “Hofmann” (Gentleman of the Court) and awarded
a yearly stipend, as well as 2,180 liters of grain and 2,000 liters of wine tax-free. He died
in 1468, having enjoyed this official recognition for only three years.

Printing quickly affected both religion and science in Europe. By 1517, when Martin
Luther posted his Ninety-Five Theses on the door of All Saint’s Church in Wittenburg,
many cities has printing presses. The theses were quickly reprinted and translated, and
they spread throughout Europe. This initiated a pamphlet war, in which both sides used
printing to spread their views. The impact of Luther’s German translation of the Bible
was greatly increased by the fact that inexpensive printed copies were widely available.

Science was Similarly revolutionized. Nicolaus Copernicus (1473-1543) had a far greater
impact on the history of science than his near contemporary Leonardo da Vinci (1452-1519)
because of printing. Leonardo’s thousands of pages of notes and his innovations in virtually
all the fields of human knowledge have only recently become available in printed form. By
contrast, the publication Copernicus’ great book, De revolutionibus orbium coelestium (On
the Revolutions of the Celestial Spheres) initiated a sequence of discoveries by Tycho Brahe,
Galileo, Johannes Kepler and Isaac Newton, discoveries upon which the modern world is
built.
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Figure 5.13: Gutenberg is credited with introducing printing with movable type
into Europe, with many improvements of technique. His inventions were a
turning point in European history, and ushered in the modern era, the Refor-
mation, the Age of Reason and the Industrial Revolution.
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Figure 5.14: Gutenberg’s printing press

Figure 5.15: Gutenberg’s bible
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5.9 The Enlightenment

Political philosophy of the Enlightenment

The 16th, 17th and 18th centuries have been called the “Age of Discovery”, and the “Age
of Reason”, but they might equally well be called the “Age of Observation”. On every
side, new worlds were opening up to the human mind. The great voyages of discovery
had revealed new continents, whose peoples demonstrated alternative ways of life. The
telescopic exploration of the heavens revealed enormous depths of space, containing myriads
of previously unknown stars; and explorations with the microscope revealed a new and
marvelously intricate world of the infinitesimally small.

In the science of this period, the emphasis was on careful observation. This same
emphasis on observation can be seen in the Dutch and English painters of the period. The
great Dutch masters, such as Jan Vermeer (1632-1675), Frans Hals (1580-1666), Pieter
de Hooch (1629-1678) and Rembrandt van Rijn (1606-1669), achieved a careful realism
in their paintings and drawings which was the artistic counterpart of the observations of
the pioneers of microscopy, Anton van Leeuwenhoek and Robert Hooke. These artists
were supported by the patronage of the middle class, which had become prominent and
powerful both in England and in the Netherlands because of the extensive world trade in
which these two nations were engaged.

Members of the commercial middle class needed a clear and realistic view of the world
in order to succeed with their enterprises. (An aristocrat of the period, on the other hand,
might have been more comfortable with a somewhat romanticized and out-of-focus vision,
which would allow him to overlook the suffering and injustice upon which his privileges
were based.) The rise of the commercial middle class, with its virtues of industriousness,
common sense and realism, went hand in hand with the rise of experimental science, which
required the same virtues for its success.

In England, the House of Commons (which reflected the interests of the middle class),
had achieved political power, and had demonstrated (in the Puritan Rebellion of 1640 and
the Glorious Revolution of 1688) that Parliament could execute or depose any monarch
who tried to rule without its consent. In France, however, the situation was very different.

After passing through a period of disorder and civil war, the French tried to achieve
order and stability by making their monarchy more absolute. The movement towards
absolute monarchy in France culminated in the long reign of Louis XIV, who became king
in 1643 and who ruled until he died in 1715.

The historical scene which we have just sketched was the background against which
the news of Newton’s scientific triumph was received. The news was received by a Europe
which was tired of religious wars; and in France, it was received by a middle class which
was searching for an ideology in its struggle against the ancien régime.

To the intellectuals of the 18th century, the orderly Newtonian cosmos, with its planets
circling the sun in obedience to natural law, became an imaginative symbol representing
rationality. In their search for a society more in accordance with human nature, 18th
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century Europeans were greatly encouraged by the triumphs of science. Reason had shown
itself to be an adequate guide in natural philosophy. Could not reason and natural law
also be made the basis of moral and political philosophy? In attempting to carry out
this program, the philosophers of the Enlightenment laid the foundations of psychology,
anthropology, social science, political science and economics.

One of the earliest and most influential of these philosophers was John Locke (1632-
1705), a contemporary and friend of Newton. In his Second Treatise on Government,
published in 1690, John Locke’s aim was to refute the doctrine that kings rule by divine
right, and to replace that doctrine by an alternative theory of government, derived by
reason from the laws of nature. According to Locke’s theory, men originally lived together
without formal government:

“Men living together according to reason,” he wrote, “without a common superior on
earth with authority to judge between them, is properly the state of nature... A state
also of equality, wherein all the power and jurisdiction is reciprocal, no one having more
than another; there being nothing more evident than that creatures of the same species,
promiscuously born to all the same advantages of nature and the use of the same facilities,
should also be equal amongst one another without subordination or subjection...”

“But though this be a state of liberty, yet it is not a state of licence... The state of
nature has a law to govern it, which obliges every one; and reason, which is that law,
teaches all mankind who will but consult it, that being equal and independent, no one
ought to harm another in his life, health, liberty or possessions.”

In Locke’s view, a government is set up by means of a social contract. The government
is given its powers by the consent of the citizens in return for the services which it renders
to them, such as the protection of their lives and property. If a government fails to render
these services, or if it becomes tyrannical, then the contract has been broken, and the
citizens must set up a new government.

Locke’s influence on 18th century thought was very great. His influence can be seen,
for example, in the wording of the American Declaration of Independence. In England,
Locke’s political philosophy was accepted by almost everyone. In fact, he was only codifying
ideas which were already in wide circulation and justifying a revolution which had already
occurred. In France, on the other hand, Locke’s writings had a revolutionary impact.

Credit for bringing the ideas of both Newton and Locke to France, and making them
fashionable, belongs to Francois Marie Arouet (1694-1778), better known as “Voltaire”.
Besides persuading his mistress, Madame de Chatelet, to translate Newton’s Principia
into French, Voltaire wrote an extremely readable commentary on the book; and as a
result, Newton’s ideas became highly fashionable among French intellectuals. Voltaire
lived with Madame du Chatelet until she died, producing the books which established him
as the leading writer of Europe, a prophet of the Age of Reason, and an enemy of injustice,
feudalism and superstition.

The Enlightenment in France is considered to have begun with Voltaire’s return from
England in 1729; and it reached its high point with the publication of of the Encyclopedia
between 1751 and 1780. Many authors contributed to the Encyclopedia, which was an
enormous work, designed to sum up the state of human knowledge.
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Figure 5.16: John Locke (1632-1705): “Men living together according to reason,
without a common superior on earth with authority to judge between them, is
properly the state of nature... A state also of equality, wherein all the power and
jurisdiction is reciprocal, no one having more than another; there being nothing
more evident than that creatures of the same species, promiscuously born to
all the same advantages of nature and the use of the same facilities, should also
be equal amongst one another without subordination or subjugation...”
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Turgot and Montesquieu wrote on politics and history; Rousseau wrote on music, and
Buffon on natural history; Quesnay contributed articles on agriculture, while the Baron
d’Holbach discussed chemistry. Other articles were contributed by Condorcet, Voltaire
and d’Alembert. The whole enterprise was directed and inspired by the passionate faith
of Denis Diderot (1713-1784). The men who took part in this movement called themselves
“philosophes”. Their creed was a faith in reason, and an optimistic belief in the perfectibil-
ity of human nature and society by means of education, political reforms, and the scientific
method.

The philosophes of the Enlightenment visualized history as a long progression towards
the discovery of the scientific method. Once discovered, this method could never be lost;
and it would lead inevitably (they believed) to both the material and moral improvement
of society. The philosophes believed that science, reason, and education, together with the
principles of political liberty and equality, would inevitably lead humanity forward to a
new era of happiness. These ideas were the faith of the Enlightenment; they influenced the
French and American revolutions; and they are still the basis of liberal political belief.

Voltaire and Rousseau
Voltaire (1694-1778)

Francois-Marie Arouet, who later changed his name to Voltaire, was born in Paris. His
father was a lawyer and a minor treasury official, while his mother’s family was on the
lowest rank if the French nobility. He was educated by Jesuits at College Louis-le-Grande,
where he learned Latin theology and rhetoric. He later became fluent in Italian, Spanish
and English.

Despite his father’s efforts to make him study law, the young Voltaire was determined to
become a writer. He eventually became the author of more than 2,000 books and pamphlets
and more than 20,000 letters. His works include many forms of writing, including plays,
poems, novels, essays and historical and scientific works. His writings advocated civil
liberties, and he used his satirical and witty style of writing to criticize intolerance, religious
dogma and absolute monarchy. Because of the intolerance and censorship of his day, he
was frequently in trouble and sometimes imprisoned. Nevertheless, his works were very
popular, and he eventually became extremely rich, partly through clever investment of
money gained through part ownership of a lottery.

During a period of forced exile in England, Voltaire mixed with the English aristocracy,
meeting Alexander Pope, John Gay, Jonathan Swift, Lady Mary Wortley Montagu, Sarah,
Duchess of Marlborough, and many other members of the nobility and royalty. He admired
the English system of constitutional monarchy, which he considered to be far superior to
the absolutism then prevailing in France. In 1733, he published a book entitled Letters
concerning the English Nation, in London. When French translation was published in
1734, Voltaire was again in deep trouble. In order to avoid arrest, he stayed in the country
chateau belonging to Emilie du Chételet and her husband, the Marquis du Chatelet.

As a result, Madame du Chatelet became his mistress and the relationship lasted for
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16 years. Her tolerant husband, the Marquis, who shared their intellectual and scientific
interests, often lived together with them. Voltaire paid for improvements to the chateau,
and together, the Marquis and Voltaire collected more than 21,000 books, and enormous
number for that time. Madame du Chatelet translated Isaac Newton’s great book, Prin-
cipia Mathematica, into French, and her translation was destined to be the standard one
until modern times. Meanwhile, Voltaire wrote a French explanation of the ideas of the
Principia, which made these ideas accessible to a wide public in France. Together, the
Marquis, his wife and Voltaire also performed many scientific experiments, for example
experiments designed to study the nature of fire.

Voltaire’s vast literary output is available today in approximately 200 volumes, pub-
lished by the University of Oxford, where the Voltaire Foundation is now established as a
research department.

Rousseau (1712-1778)

In 1754 Rousseau wrote: “The first man who, having fenced in a piece of land, said ‘This
is mine’, and found people naive enough to believe him, that man was the true founder
of civil society. From how many crimes, wars, and murders, from how many horrors and
misfortunes might not any one have saved mankind, by pulling up the stakes, or filling up
the ditch, and crying to his fellows: Beware of listening to this impostor; you are undone if
you once forget that the fruits of the earth belong to us all, and the earth itself to nobody.”

Later, he began his influential book The Social Contract, published in 1752, with the
dramatic words: “Man is born free, and everywhere he is in chains. Those who think
themselves the masters of others are indeed greater slaves than they.” Rousseau concludes
Chapter 3 of this book with the words: “Let us then admit that force does not create right,
and that we are obliged to obey only legitimate powers”. In other words, the ability to
coerce is not a legitimate power, and there is no rightful duty to submit to it. A state has
no right to enslave a conquered people.

These ideas, and those of John Locke, were reaffirmed in 1776 by the American Decla-
ration of Independence: “We hold these truths to be self-evident: That all men are created
equal. That they are endowed by their Creator with certain inaliable rights, and the among
these are the rights to life, liberty and the pursuit of happiness; and that to pursue these
rights, governments are instituted among men, deriving their just powers from the consent
of the governed.”

Today, in an era of government tyranny and subversion of democracy, we need to
remember that the just powers of any government are not derived from the government’s
ability to use of force, but exclusively from the consent of the governed.
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Figure 5.17: Voltaire used his satirical and witty style of writing to criticize in-
tolerance, religious dogma and absolute monarchy. He wrote more than 2,000
books and pamphlets and more than 20,000 letters. His writings made a sig-
nificant contribution to the Enlightenment, and paved the way for revolutions
both in France and America.
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Figure 5.18: The frontpiece of Voltaire’s book popularizing Newton’s ideas for
French readers. Madame du Chatelet appears as a muse, reflecting Newton’s
thoughts down to Voltaire.
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Figure 5.19: The work of Sir Isaac Newton (1642-1726) illustrates a key aspect of
human cultural evolution: Because of the introduction of printing in Europe,
Newton was able to build on the work of his predecessors, Copernicus, Brahe,
Galileo and Kepler. He could never have achieved his great synthesis alone.
During the Enlightenment, Newton became a symbol of rationality and reason.
Alexander Pope wrote: “Nature, and nature’s laws, lay hid in night. God said
‘Let Newton be’, and all was light!”
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Figure 5.20: Unlike Voltaire, Rousseau was not an advocate of science, but
instead believed in the importance of emotions. He believed that civilization
has corrupted humans rather than making them better. Rousseau was a pioneer
of the romantic movement. His book, The Soctal Contract, remains influential
today.
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Figure 5.21: The printer and publisher Joseph Johnson (1738-1809).

The printer and publisher Joseph Johnson

As an example of the influence of printing on the liberation of ideas, we can consider the
circle of important authors that formed around the English printer and publisher Joseph
Johnson (1738-1809). His weekly dinners for authors were famous. Among the many great
thinkers. artists, scientists, writers and religious dissenters who attended these dinners,
or whose works he published, were William Cowper, Erasmus Darwin, William Blake,
Henry Fuselli, Mary Wollstonecraft, William Godwin, Thomas Robert Malthus, Thomas
Paine, Pricilla Wakefield, Gilbert Wakefield. Benjamin Franklin, Richard Price and Joseph
Priestley.

Throughout her career, the pioneering feminist writer Mary Wollstonecraft was aided
by Johnson. As she wrote to her sister, she had decided to become the first of a new genus:
a professional female writer. Having learned French and German, she translated Necker’s
Of the Importance of Religious Opinions and Saltzman’s Elements of Morality for the Use
of Children. Mary was helped in her new career by the liberal publisher, Joseph Johnson,
who was also the publisher of Thomas Paine and William Godwin. Mary met these already
famous authors at Johnson’s dinner parties, and conversations with them helped to expand
her knowledge and ambitions. Joseph Johnson was a very brave man. By publishing the
works of radical authors, he was risking arrest by England’s repressive government. In her
letters, Mary described Johnson as “a father and brother”.

At Johnson’s parties Mary met, for the second time, the famous novelist and philosopher
William Godwin. This time, they both formed a higher opinion of each other than at their
first meeting. A passionate love affair developed between them, and when Mary became
pregnant, they were married. Tragically, Mary Wollstonecraft died in childbirth. Her
daughter Mary would later become the wife of Godwin’s admirer, the poet Percy Bysshe
Shelley, and Mary Shelly created the enduring masterpiece Frankenstein.
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Figure 5.22: Mary Wollstonecraft in a painting by John Opie. She called Joseph
Johnson “my father and brother”.
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Figure 5.23: The famous scientist and dissenter, Joseph Priestley, in a portrait
by Henry Fuselli, commissioned by Joseph Johnson. Priestley and Fuselli were
among Johnson’s closest friends.
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5.10 Universal education

Today, there is some form of compulsory education in most countries. However, regional
differences are still very great, as shown in the maps below.

The percentage of the global population without any schooling decreased from 36% in
1960 to 25% in 2000. In the developed countries, illiteracy rates and the number of children
without schooling both were approximately halved between 1970 and 2000. However,
illiteracy in the less developed countries exceeded that of the developed ones by a factor
of ten in 1970. By 2000, this factor had increased to approximately 20.

As economies become more and more knowledge-based, high and higher educational
levels of education are required. For many modern professions, students may be 30 years
old before they complete their doctoral and post-doctoral educations. For this reason high
educational levels are linked with lower fertility rates. Teenagers are biologically ready
to have children, but in modern societies, they are not yet sufficiently educated to obtain
well-paid work.
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Chapter 6

AN EXPLOSION OF
TECHNOLOGY

We have seen how the development of printing in Europe produced a brilliant, chainlike
series of scientific discoveries. During the 17th century, the rate of scientific progress
gathered momentum, and in the 18th and 19th centuries, the practical applications of
scientific knowledge revolutionized the methods of production in agriculture and industry.

During the Industrial Revolution, feudal society, with its patterns of village life and
its traditional social obligations, was suddenly replaced by a money-dominated society
whose rules were purely economic, and in which labor was regarded as a commodity. The
changes produced by the industrial revolution at first resulted in social chaos - enormous
wealth in some classes of society, and great suffering in other classes; but later, after the
appropriate social and political adjustments had been made, the improved methods of
production benefited all parts of society in a more even way.

6.1 Development of the steam engine

The discovery of atmospheric pressure

Early steam engines made use of the pressure of the atmosphere, and in fact it was the
discovery of atmospheric pressure that led to the invention of the steam engine. Aristotle
had maintained “nature abhors a vacuum”, but this doctrine was questioned by the Italian
physicist Evangelista Torricelli (1608-1647), who invented the barometer in 1643.

Pump makers working for the Grand Duke of Tuscany had found that suction pumps
were unable to raise water to heights greater than 10 meters (in today’s units). Attempting
to understand why this should be the case, Torricelli filled an approximately 1-meter-long
glass tube with mercury, which is 14 times denser than water. The tube was sealed at one
end, and open at the other. He then immersed the open end in a dish of mercury, and
raised the sealed end, so that the tube was in a vertical position. Part of the mercury
flowed out of the tube into the dish, leaving a 76-centimeter-high column of mercury, and
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24 centimeters of empty space at the top. The empty space contained what we now call a
Torricellian vacuum.

This experiment enabled Torricelli to understand why the Grand Duke’s suction pumps
were unable to raise water to a height greater than 10 meters. Torricelli realized that both
the 10 meter column of water (the maximum that could be achieved), and the (equally
heavy) 76 centimeter column of mercury, were held in place by the weight of the atmo-
sphere, which they exactly balanced. Later experiments soon demonstrated that the height
of the column of mercury in Torricelli’s barometer depended on the weather, and on height
above sea level. Summarizing his experiments, Torricelli wrote: “We live submerged at
the bottom of an ocean of elementary air, which is known by incontestable experiments to
have weight.”

Torricelli’s experiments marked the start of period where, throughout Europe, much
interest was focused on experiments with gases. In 1650 Otto von Guericke, the Mayor
of Magdeburg Germany, invented the first vacuum pump. In a dramatic experiment,
performed in 1663 in the presence of Frederick Wilhelm I of Brandenburg, von Guericke’s
assistants fitted two large copper hemispheres together, after the joining surfaces had been
carefully greased to make the junction airtight. Von Guericke’s pump was then used to
evacuate the volume within the hemispheres. To the amazement of the watching crowd,
a team of 24 horses, 12 on each side, strained at the hemispheres but failed to separate
them. Von Guericke explained that it was the pressure of the atmosphere that held the
hemispheres so tightly together, and he demonstrated that when air was allowed to enter
the interior volume, the hemispheres could be separated without effort.

Steam engines using atmospheric pressure

Continuing the vogue for experiments with gases and pumps that was sweeping across
Europe, Edward Somerset, the 2nd Marquess of Worcester, designed steam-powered pumps
to bring water from wells to fountains. He published the designs for his engines in 1663,
and he may have installed pumps built according to these designs at Vauxhall House in
London. In the 1680’s a number of steam-powered pumps were constructed for Louis XIV
of France by Sir Samuel Morland (1625-1695), who lived in Vauxhall and may have been
influenced by Somerset’s ideas.

Meanwhile, in France, the physicist Denis Papin (1647-1712) had become interested in
the motive force of steam. Together with Gottfried Leibniz he invented the pressure cooker,
and he also invented designs for steam engines. Some of Papin’s steam engine designs
were presented to the Royal Society between 1707 and 1712, without acknowledgment or
payment, and this caused Papin to complain bitterly. He died soon afterward.

In 1698, the English inventor Thomas Savery (1650-1715) patented a steam engine for
pumping water. It had no piston, but used condensing steam and atmospheric pressure to
bring up the water by means of a siphon principle. It was therefore useless for pumping
water from very deep mines, although Savery described it as the “Miner’s Friend”. Savery’s
design was so similar to Somerset’s that it was probably a direct copy.

The ironmonger Thomas Newcomen’s “atmospheric-engine” of 1712 proved to be much
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Figure 6.2: The French physicist Papin’s design for a steam engine (1690).

more practical for pumping water from the deep mines of Cornwall. Newcomen was forced
to go into a partnership with Savery because of the latter’s patent, and he also used some
of Papin’s ideas. An important feature of Newcomen’s engine was a beam that transmitted
power from the working piston to a pump at the base of the mineshaft. In Newcomen’s
engine, steam entered the cylinder, driving the piston upward. A jet of water was then
sprayed into the interior of the cylinder, condensing the steam and allowing atmospheric
pressure to drive the piston down. Early models of the engine operated slowly, and the
valves were opened and closed by hand. Later, the opening and closing of the valves was
performed automatically by means of the “potter cord”. According to legend this device is
named after a boy, Humphrey Potter, who in 1713 had been given the job of opening and
closing the valves. Wishing to play with his friends, he invented the automatic mechanism.

The main problem with Newcomen’s engine was that its fuel use was enormously waste-
ful. This was because, with every cycle, the cylinder was cooled by water, and then heated
again by steam.

At Glasgow University, where Adam Smith was Professor of Moral Philosophy, there
was a shop where scientific instruments were made and sold. The owner of the shop was a
young man named James Watt (1736-1819), who came from a family of ship builders and
teachers of mathematics and navigation. Besides being an extremely competent instrument
maker, Watt was a self-taught scientist of great ability, and his shop became a meeting
place for scientifically inclined students.

James Watt tried to repair the university’s small-scale model of the Newcomen engine,
but he failed to make it work well. He could see that it was extraordinarily inefficient in
its use of fuel, and he began making experiments to find out why it was so wasteful. James
Watt quickly found the answer: The engine was inefficient because of the large amounts of
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Figure 6.3: Newcomen’s steam engine.

energy needed to heat the iron cylinder. In 1765, Watt designed an improved engine with
a separate condenser. The working cylinder could then be kept continuously hot.

To have an idea for a new, energy-saving engine was one thing, however, and to make
the machine practical was another. James Watt had experience as an instrument maker,
but no experience in large-scale engineering. However, Watt formed a partnership with
Matthew Boulton, who was the most talented and progressive manufacturer in England.

Boulton was more interested in applying art and science to manufacturing than he was
in simply making money. His idea was to bring together under one roof the various parts
of the manufacturing process which had been scattered among many small workshops by
the introduction of division of labor. He believed that improved working conditions would
result in an improved quality of products.

With these ideas in mind, Matthew Boulton built a large mansion-like house on his
property at Soho, outside Birmingham, and installed in it all the machinery necessary for
the complete production of a variety of small steel products. Because of his personal charm,
and because of the comfortable working conditions at the Soho Manufactory, Boulton was
able to attract the best and most skillful craftsmen in the region; and by 1765, the number
of the staff at Soho had reached 600.
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At this point, Erasmus Darwin (the grandfather of Charles Darwin) introduced James
Watt to Matthew Boulton, and they formed a partnership for the development of the steam
engine. The high quality of craftsmanship and engineering skill which Matthew Boulton
was able to put at Watt’s disposal allowed the young inventor to turn his great idea into
a reality. However, progress was slow, and the original patent was running out.

Boulton skillfully lobbied in Parliament for an extension of the patent and, as James
Watt put it, “Mr. Boulton’s amiable and friendly character, together with his fame as
an ingenious and active manufacturer procured me many and very active friends in both
houses of Parliament”.

In 1775, the firm of Boulton and Watt was granted an extension of the master steam
engine patent until 1800. From a legal and financial standpoint, the way was now clear
for the development of the engine; and a major technical difficulty was overcome when the
Birmingham ironmaster and cannon-maker, John Wilkinson, invented a method for boring
large cylinders accurately by fixing the cutting tool to a very heavy and stable boring shaft.

By 1780, Boulton and Watt had erected 40 engines, about half of which pumped water
from the deep Cornish tin mines. Even their early models were at least four times as
efficient as the Newcomen engine, and Watt continually improved the design. At Boulton’s
urging, James Watt designed rotary engines, which could be used for driving mills; and
he also invented a governor to regulate the speed of his engines, thus becoming a pioneer
of automation. By the time its patent of the separate condenser had run out in 1800, the
firm of Boulton and Watt had made 500 engines. After 1800, the rate of production of
steam engines became exponential, and when James Watt died in 1819, his inventions had
given employment, directly or indirectly, to an estimated two million people.

The Soho manufactory became an almost obligatory stop on any distinguished person’s
tour of England. Samuel Johnson, for example, wrote that he was received at Soho with
great civility; and Boswell, who visited Soho on another occasion, was impressed by “the
vastness and contrivance” of the machinery. He wrote that he would never forget Matthew
Boulton’s words to him as they walked together through the manufactory: “I sell here, Sir,
what all the world desires to have - Power!”

6.2 Working conditions

Both Matthew Boulton and James Watt were model employers as well as pioneers of the
factory system. Boulton had a pension scheme for his men, and he made every effort to
insure that they worked under comfortable conditions. However, when he died in 1809,
the firm of Boulton and Watt was taken over by his son, Matthew Robbinson Boulton, in
partnership with James Watt Jr. The two sons did not have their fathers’ sense of social
responsibility; and although they ran the firm very efficiently, they seemed to be more
interested in profit-making than in the welfare of their workers.

A still worse employer was Richard Arkwright (1732-1792), who held patents on a series
of machines for carding, drawing and spinning silk, cotton, flax and wool. He was a rough,
uneducated man, who rose from humble origins to become a multimillionaire by driving
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Figure 6.4: Manchester in the 1840’s.

himself almost as hard as he drove his workers. Arkwright perfected machines (invented
by others) which could make extremely cheap and strong cotton thread; and as a result, a
huge cotton manufacturing industry grew up within the space of a few years. The growth
of the cotton industry was especially rapid after Arkwright’s patent expired in 1785.

Crowds of workers, thrown off the land by the Enclosure Acts and by the Clearances
in Scotland, flocked to the towns, seeking work in the new factoriesﬂ Wages fell to a near-
starvation level, hours of work increased, and working conditions deteriorated. Dr. Peter
Gaskell, writing in 1833, described the condition of the English mill workers as follows:

“The vast deterioration in personal form which has been brought about in the manu-
facturing population during the last thirty years... is singularly impressive, and fills the
mind with contemplations of a very painful character... Their complexion is sallow and
pallid, with a peculiar flatness of feature caused by the want of a proper quantity of adipose
substance to cushion out the cheeks. Their stature is low - the average height of men being
five feet, six inches... Great numbers of the girls and women walk lamely or awkwardly...
Many of the men have but little beard, and that in patches of a few hairs... (They have)
a spiritless and dejected air, a sprawling and wide action of the legs...”

“Rising at or before daybreak, between four and five o’clock the year round, they
swallow a hasty meal or hurry to the mill without taking any food whatever... At twelve

'During the Highland Clearances, families that had farmed the land for generations were violently
forced to leave their houses, which were then burned to prevent return. The land was afterward used
as pasturage for sheep, which had been found to be more profitable. Donald McLeod, a crofter (small
farmer) in Sutherland, has left the following account of the Clearances in his district: “The consternation
and confusion were extreme. Little or no time was given for the removal of persons or property; the people
striving to remove the sick and helpless before the fire should reach them; next, struggling to save the most
valuable of their effects. The cries of the women and children, the roaring of the affrighted cattle, hunted
at the same time by the yelling dogs of the shepherds amid the smoke and fire, altogether presented a
scene that completely baffles description - it required to be seen to be believed... The conflagration lasted
six days, until the whole of the dwellings were reduced to ashes or smoking ruins.”



210 A HISTORY OF THE EARTH

Figure 6.5: London during the industrial revolution.

o’clock the engine stops, and an hour is given for dinner... Again they are closely immured
from one o’clock till eight or nine, with the exception of twenty minutes, this being allowed
for tea. During the whole of this long period, they are actively and unremittingly engaged
in a crowded room at an elevated temperature.”

Dr. Gaskell described the housing of the workers as follows:

“One of the circumstances in which they are especially defective is that of drainage
and water-closets. Whole ranges of these houses are either totally undrained, or very
partially... The whole of the washings and filth from these consequently are thrown into
the front or back street, which, often being unpaved and cut into deep ruts, allows them
to collect into stinking and stagnant pools; while fifty, or even more than that number,
having only a single convenience common to them all, it is in a very short time choked
with excrementous matter. No alternative is left to the inhabitants but adding this to the
already defiled street.”

“It frequently happens that one tenement is held by several families... The demoralizing
effects of this utter absence of domestic privacy must be seen before they can be thoroughly
appreciated. By laying bare all the wants and actions of the sexes, it strips them of outward
regard for decency - modesty is annihilated - the father and the mother, the brother and
the sister, the male and female lodger, do not scruple to commit acts in front of each other
which even the savage keeps hid from his fellows.”

“Most of these houses have cellars beneath them, occupied - if it is possible to find a
lower class - by a still lower class than those living above them.”
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Figure 6.6: A child working in a South Carolina mill in 1908.

Figure 6.7: Child coal miners in Gary, West Virginia.
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The following extract from John Fielden’s book, The Curse of the Factory System
(1836), describes the condition of young children working in the cotton industry:

“It is well known that Arkwright’s (so called at least) inventions took manufactures
out of the cottages and farmhouses of England... and assembled them in the counties
of Derbyshire, Nottinghamshire and more particularly, in Lancashire, where the newly-
invented machinery was used in large factories built on the side of streams capable of
turning the water wheel. Thousands of hands were suddenly required in these places,
remote from towns.”

“The small and nimble fingers of children being by far the most in request, the custom
instantly sprang up of procuring ‘apprentices’ from the different parish workhouses of
London, Birmingham and elsewhere... Overseers were appointed to see to the works, whose
interest it was to work the children to the utmost, because their pay was in proportion to
the quantity of work which they could exact.”

“Cruelty was, of course, the consequence; and there is abundant evidence on record to
show that in many of the manufacturing districts, the most heart-rending cruelties were
practiced on the unoffending and friendless creatures... that they were flogged, fettered
and tortured in the most exquisite refinement of cruelty, that they were, in many cases,
starved to the bone while flogged to their work, and that even in some instances they
were driven to commit suicide... The profits of manufacture were enormous; but this only
whetted the appetite it should have satisfied.”

The misery of factory workers in England during the early phases of the Industrial
Revolution prompted the writings of Karl Marx (1818-1883) and Frederich Engels (1820-
1895). Engels’ book, The condition of the Working Class in England, was published in
1844. The Communist Manifesto, (Manifest der Komunistischen Partei), on which Marx
and Engels collaborated, was published in 1848, while Marx’s large book, Das Kapital.
Kritik der politischen Oekonomie was printed in 1867.

One of the arguments which was used to justify the abuse of labor was that the alter-
native was starvation. The population of Europe had begun to grow rapidly for a variety
of reasons: - because of the application of scientific knowledge to the prevention of disease;
because the potato had been introduced into the diet of the poor; and because bubonic
plague had become less frequent after the black rat had been replaced by the brown rat,
accidentally imported from Asia.

It was argued that the excess population could not be supported unless workers were
employed in the mills and factories to produce manufactured goods, which could be ex-
changed for imported food. In order for the manufactured goods to be competitive, the
labor which produced them had to be cheap: hence the abuses. (At least, this is what was
argued).

6.3 The slow acceptance of birth control in England

Industrialization benefited England, but in a very uneven way, producing great wealth for
some parts of society, but also extreme misery in other social classes. For many, technical
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progress by no means led to an increase of happiness. The persistence of terrible poverty
in 19th-century England, and the combined pessimism of Ricardo and Malthus, caused
Thomas Carlyle to call economics “the Dismal Science”.

Fortunately, Ricardo’s “Iron Law of Wages” seems to have rusted over the years. Ap-
parently it was not an eternal law, but only a description of a passing phase of industrial-
ism, before the appropriate social and legislative adjustments had been made. Among the
changes which were needed to insure that the effects of technical progress became beneficial
rather than harmful, the most important were the abolition of child labor, the development
of unions, the minimum wage law, and the introduction of birth control.

Francis Place (1771-1854), a close friend of William Godwin and James Mill, was one
of the earliest and most courageous pioneers of these needed changes. Place had known
extreme poverty as a child, but he had risen to become a successful businessman and a
leader of the trade union movement.

Place and Mill were Utilitarians, and like other members of this movement they accepted
the demographic studies of Malthus while disagreeing with Malthus’ rejection of birth
control. They reasoned that since abortion and infanticide were already widely used by
the poor to limit the size of their families, it was an indication that reliable and humane
methods of birth control would be welcome. If marriage could be freed from the miseries
which resulted from excessive numbers of children, the Utilitarians believed, prostitution
would become less common, and the health and happiness of women would be improved.

Francis Place and James Mill decided that educational efforts would be needed to
make the available methods of birth control more widely known and accepted. In 1818,
Mill cautiously wrote “The great problem of a real check to population growth has been
miserably evaded by all those who have meddled with the subject... And yet, if the
superstitions of the nursery were discarded, and the principle of utility kept steadily in
view, a solution might not be very difficult to be found.”

A few years later, Mill dared to be slightly more explicit: “The result to be aimed at”,
he wrote in his Elements of Political Economy (1821), “is to secure to the great body of
the people all the happiness which is capable of being derived from the matrimonial union,
(while) preventing the evils which the too rapid increase of their numbers would entail.
The progress of legislation, the improvement of the education of the people, and the decay
of superstition will, in time, it may be hoped, accomplish the difficult task of reconciling
these important objects.”

In 1822, Francis Place took the considerable risk of publishing a four-page pamphlet
entitled To the Married of Both Sezes of the Working People, which contained the following
passages:

“It is a great truth, often told and never denied, that when there are too many working
people in any trade or manufacture, they are worse paid than they ought to be paid, and
are compelled to work more hours than they ought to work. When the number of working
people in any trade or manufacture has for some years been too great, wages are reduced
very low, and the working people become little better than slaves.”

“When wages have thus been reduced to a very small sum, working people can no
longer maintain their children as all good and respectable people wish to maintain their
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children, but are compelled to neglect them; - to send them to different employments; - to
Mills and Manufactories, at a very early age. The miseries of these poor children cannot
be described, and need not be described to you, who witness them and deplore them every
day of your lives.”

“The sickness of yourselves and your children, the privation and pain and premature
death of those you love but cannot cherish as you wish, need only be alluded to. You know
all these evils too well.”

“And what, you will ask, is the remedy? How are we to avoid these miseries? The
answer is short and plain: the means are easy. Do as other people do, to avoid having
more children than they wish to have, and can easily maintain.”

“What is to be done is this. A piece of soft sponge is tied by a bobbin or penny ribbon,
and inserted just before the sexual intercourse takes place, and is withdrawn again as soon
as it has taken place. Many tie a sponge to each end of the ribbon, and they take care
not to use the same sponge again until it has been washed. If the sponge be large enough,
that is, as large as a green walnut, or a small apple, it will prevent conception... without
diminishing the pleasures of married life...”

“You cannot fail to see that this address is intended solely for your good. It is quite im-
possible that those who address you can receive any benefit from it, beyond the satisfaction
which every benevolent person and true Christian, must feel, at seeing you comfortable,
healthy and happy.”

The publication of Place’s pamphlet in 1822 was a landmark in the battle for the
acceptance of birth control in England. Another important step was taken in 1832, when a
small book entitled The Fruits of Philosophy or, the Private Companion of Young Married
People was published by a Boston physician named Dr. Charles Knowlton. The book
contained simple contraceptive advice. It reviewed the various methods of birth control
available at the time. In order for the sponge method to be reliable, Knowlton’s book
pointed out, use of a saline douching solution was necessary.

For a number of years, a reprinted edition of Knowlton’s book was sold openly in
London. However, in 1876 a new law against obscene publications was passed, and a
bookseller was sentenced to two year’s imprisonment for selling The Fruits of Philosophy.
Charles Bradlaugh, a liberal politician and editor, and his friend, the feminist author Mrs.
Annie Besant, then decided to sell the book themselves in order to provoke a new trial.
The Chief Clerk of the Magistrates, the Detective Department, and to the City Solicitor,
were all politely informed of the time and place where Charles Bradlaugh and Annie Besant
intended to sell Knowlton’s book, and the two reformers asked to be arrested.

In the historic trial that followed, the arguments of Malthus were used, not only by
Charles Bradlaugh, who conducted his own defense, but also by the Lord Chief Justice,
who instructed the jury to acquit the defendants. In the end, the jury ruled that the
motives of Besant and Bradley were above reproach. However, the issue was made less
clear when the jury also ruled Knowlton’s book to be obscene. The enormous publicity
that accompanied the trial certainly did not harm the sales of the book!

As birth control was gradually accepted in England, the average number of children
per marriage fell from 6.16 in the 1860’s to 4.13 in the 1890’s. By 1915 the figure had
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Figure 6.8: Annie Besant (1847-1933).
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fallen to 2.43. At the same time, trade unions developed, and improved social legislation
was enacted. For all of these reasons, conditions improved for the English workers.

6.4 The Industrial Revolution

The development of printing in Europe produced a brilliant, chainlike series of scientific
discoveries. During the 17th century, the rate of scientific progress gathered momentum,
and in the 18th and 19th centuries, the practical applications of scientific knowledge revo-
lutionized the methods of production in agriculture and industry.

The changes produced by the Industrial Revolution at first resulted in social chaos
- enormous wealth in some classes of society, and great suffering in other classes; but
later, after the appropriate social and political adjustments had been made, the improved
methods of production benefited all parts of society in a more even way.

The Industrial Revolution marked the start of massive human use of fossil fuels. The
stored energy from several hundred million years of plant growth began to be used at
roughly a million times the rate at which it had been formed. The effect on human society
was like that of a narcotic. There was a euphoric (and totally unsustainable) surge of
growth of both population and industrial production. Meanwhile, the carbon released into
the atmosphere from the burning of fossil fuels began to duplicate the conditions which
led to the 5 geologically-observed mass extinctions, during each of which more than half
of all living species disappeared forever.
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Figure 6.9: And was Jerusalem builded here, among these dark Satanic mills?

6.5 Technical change

We have just seen how the development of printing in Europe produced a brilliant, chainlike
series of scientific discoveries. During the 17th century, the rate of scientific progress
gathered momentum, and in the 18th and 19th centuries, the practical applications of
scientific knowledge revolutionized the methods of production in agriculture and industry.

The changes produced by the industrial revolution at first resulted in social chaos
- enormous wealth in some classes of society, and great suffering in other classes; but
later, after the appropriate social and political adjustments had been made, the improved
methods of production benefited all parts of society in a more even way.

There is, in fact, a general pattern which we can notice in the social impact of technol-
ogy: Technical changes usually occur rapidly, while social and political adjustments take
more time. The result is an initial period of social disruption following a technical change,
which continues until the structure of society has had time to adjust. Thus, for exam-
ple, the introduction of a money-based economy into a society which has previously been
based on a pattern of traditional social duties always creates an initial period of painful
disruption.

In the case of the Industrial Revolution, feudal society, with its patterns of village life
and its traditional social obligations, was suddenly replaced by an industrial society whose
rules were purely economic, and in which labor was regarded as a commodity. At first,
the change produced severe social disruption and suffering; but now, after two centuries
of social and political adjustment, the industrialized countries are generally considered to
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have benefited from the change.

Cullen, Black and Watt

The two driving forces behind the Industrial Revolution were world trade and scientific dis-
covery. During the 18th century, both these forces were especially strongly felt in Scotland
and in the north-western part of England. The distilling industry in Scotland grew enor-
mously because of world trade; and the resulting interest in what happens when liquids are
vaporized and condensed produced one of the major scientific and technical developments
of the Industrial Revolution.

The first step in this development was taken by William Cullen, a professor of medicine
at the universities of Glasgow and Edinburgh. In a paper entitled Of the Cold Produced
by Evaporation (1749), Cullen wrote that he had noticed that “..water and some other
liquids, in evaporating, produce some degree of cold”.

Cullen therefore began to make experiments in which he dipped a thermometer in and
out of a liquid and observed the drop in temperature. He noticed that the effect was
increased by “...moving the thermometer very nimbly to and fro in the air; or if, while the
ball was wet with spirit of wine, it was blown upon with a pair of bellows”. In this way,
Cullen achieved a temperature 44 degrees below the freezing point of water. He next tried
producing vacuums above various liquids with the help of an air pump:

“We set the vessel containing the ether”, Cullen wrote, “In another a little larger,
containing water. Upon exhausting the receiver and the vessel’s remaining a few minutes
i vacuo, we found the most part of the water frozen, and the vessel containing the ether
surrounded with a thick crust of ice.”

One of Cullen’s favorite students at Edinburgh was Joseph Black (1728-1799). He be-
came Cullen’s scientific assistant, and later, in 1756, he was elected to the Chair of Medicine
at Glasgow University. Continuing Cullen’s work on the cold produced by evaporating lig-
uids, Black discovered and studied quantitatively the phenomenon of latent heats, e.g., the
very large quantities of heat which are necessary to convert ice into water, or to convert
water into steam.

Black was led to his discovery of latent heats not only by Cullen’s work, but also by
his own observations on Scottish weather. Writing of the discovery, one of Black’s friends
at Glasgow recorded that “...since a fine winter day of sunshine did not at once clear the
hills of snow, nor a frosty night suddenly cover the ponds with ice, Dr. Black was already
convinced that much heat was absorbed and fixed in the water which slowly trickled from
the wreaths of snow; and on the other hand, that much heat emerged from it while it was
slowly changing into ice. For, during a thaw, a thermometer will always sink when removed
from the air into melting snow; and during a severe frost it will rise when plunged into
freezing water. Therefore in the first case, the snow is receiving heat, and in the last, the
water is allowing it to emerge again.”

At Glasgow University, where Joseph Black was Professor of Medicine, there was a shop
where scientific instruments were made and sold. The owner of the shop was a young man
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named James Watt (1736-1819), who came from a family of ship builders and teachers of
mathematics and navigation. Besides being an extremely competent instrument maker,
Watt was a self-taught scientist of great ability, and his shop became a meeting place for
scientifically inclined students. Dr. Black was also a frequent visitor to Watt’s shop, and a
strong friendship formed between the professor and the highly intelligent young instrument
maker.

In 1763, Glasgow University asked James Watt to repair a model of a Newcomen steam
engine. This type of steam engine had been used for several years to pump water out of
mines. It had a single cylinder which filled with steam so that the piston was driven to one
end. Then water was sprayed into the cylinder, condensing the steam; and the vacuum
drew the piston back to the other end of the cylinder, thus completing the cycle.

James Watt tried to repair the university’s small-scale model of the Newcomen engine,
but he failed to make it work well. He could see that it was extraordinarily inefficient
in its use of fuel, and he began making experiments to find out why it was so wasteful.
Because of James Watt’s friendship with Joseph Black, he quickly found the answer in the
phenomena of latent heats and specific heats: The engine was inefficient because of the
large amounts of energy needed to convert water into steam and to heat the iron cylinder.

In 1765, Watt designed an improved engine with a separate condenser. The working
cylinder could then be kept continuously hot, and the condensing steam could be returned
through the boiler, so that its latent heat could be used to preheat the incoming water.
To have an idea for a new, energy-saving engine was one thing, however, and to make the
machine practical was another. James Watt had experience as instrument maker, but no
experience in large-scale engineering.

In 1767, Watt was engaged to make a survey for a canal which was to join the Forth
and the Clyde through Loch Lomond. Because of this work, he had to make a trip to
London to explain the canal project to a parliamentary committee; and on the return trip
he met Dr. Erasmus Darwin in Birmingham. Darwin, who was interested in steam engines,
quickly recognized Watt’s talent and the merit of his idea.

Erasmus Darwin (1731-1802) was the most famous physician of the period, but his
interests were by no means confined to medicine. He anticipated his grandson, Charles
Darwin, by developing the first reasonably well thought-out theory of evolution; and, at the
time when he met James Watt he was enthusiastically trying to design a steam locomotive.
His collaborators in this project were Benjamin Franklin and the pioneering Birmingham
industrialist, Matthew Boulton.

In August, 1767, Erasmus Darwin wrote to Watt: “The plan of your steam improve-
ments [ have religiously kept secret, but begin to see myself some difficulties in your
execution, which did not strike me when you were here. I have got another and another
hobby horse since I saw you. I wish that the Lord would send you to pass a week with me,
and Mrs. Watt with you; - a week, a month, a year!”

Dr. Darwin introduced James Watt to Matthew Boulton, and a famous partnership
was formed. The partnership of Boulton and Watt was destined to make the steam engine
practical, and thus to create a new age - an age in which humans would would rely for
power neither on their own muscles nor on the muscles of slaves, but would instead control
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almost unlimited power through their engines.

James Watt was lucky to meet Erasmus Darwin and to be introduced to Matthew
Boulton, since Boulton was the most talented and progressive manufacturer in England -
the best possible man to understand the significance of Watt’s great invention and to help
in its development.

Boulton

Matthew Boulton was the son of a Birmingham manufacturer, and at the age of seventeen,
he had invented a type of metal buckle inlaid with glass, which proved to be extremely
popular and profitable. By the time that he was twenty-one, his father had made him
manager of the business. At twenty-eight, Matthew Boulton married an heiress, receiving
a very large dowry. When his wife died four years later, Boulton married her younger
sister, and he was given a second large fortune.

Instead of retiring from manufacturing and becoming a country gentleman, as most of
his contemporaries would have done, Boulton used his wealth to try out new ideas. He
tried especially to improve the quality of the goods manufactures in Birmingham. Since
he was already an extremely rich man, he was more interested in applying art and science
to manufacturing than he was in simply making money.

Boulton’s idea was to bring together under one roof the various parts of the manufac-
turing process which had been scattered among many small workshops by the introduction
of division of labor. He believed that improved working conditions would result in an
improved quality of products.

With these ideas in mind, Matthew Boulton built a large mansion-like house on his
property at Soho, outside Birmingham, and installed in it all the machinery necessary for
the complete production of a variety of small steel products. Because of his personal charm,
and because of the comfortable working conditions at the Soho Manufactory, Boulton was
able to attract the best and most skillful craftsmen in the region; and by 1765, the number
of the staff at Soho had reached 600.

Boulton continued to manufacture utilitarian goods, on which he made a profit, but he
also introduced a line of goods of high artistic merit on which he gained prestige but lost
money. He made fine gilt brass candelabra for both George III and Catherine the Great;
and he was friendly with George III, who consulted him on technical questions.

At this point, Erasmus Darwin introduced James Watt to Matthew Boulton, and they
formed a partnership for the development of the steam engine. The high quality of crafts-
manship and engineering skill which Matthew Boulton was able to put at Watt’s disposal
allowed the young inventor to turn his great idea into a reality. However, progress was
slow, and the original patent was running out.

Boulton skillfully lobbied in Parliament for an extension of the patent and, as James
Watt put it, “Mr. Boulton’s amiable and friendly character, together with his fame as
an ingenious and active manufacturer procured me many and very active friends in both
houses of Parliament”.
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In 1775, the firm of Boulton and Watt was granted an extension of the master steam
engine patent until 1800. From a legal and financial standpoint, the way was now clear
for the development of the engine; and a major technical difficulty was overcome when the
Birmingham ironmaster and cannon-maker, John Wilkinson, invented a method for boring
large cylinders accurately by fixing the cutting tool to a very heavy and stable boring shaft.

By 1780, Boulton and Watt had erected 40 engines, about half of which pumped water
from the deep Cornish tin mines. Even their early models were at least four times as
efficient as the Newcomen engine, and Watt continually improved the design. At Boulton’s
urging, James Watt designed rotary engines, which could be used for driving mills; and
he also invented a governor to regulate the speed of his engines, thus becoming a pioneer
of automation. By the time its patent of the separate condenser had run out in 1800, the
firm of Boulton and Watt had made 500 engines. After 1800, the rate of production of
steam engines became exponential, and when James Watt died in 1819, his inventions had
given employment, directly or indirectly, to an estimated two million people.

The Soho manufactory became an almost obligatory stop on any distinguished person’s
tour of England. Samuel Johnson, for example, wrote that he was received at Soho with
great civility; and Boswell, who visited Soho on another occasion, was impressed by “the
vastness and contrivance” of the machinery. He wrote that he would never forget Matthew
Boulton’s words to him as they walked together through the manufactory: “I sell here, Sir,
what all the world desires to have - Power!”

6.6 The Lunar Society

Matthew Boulton loved to entertain; and he began to invite his friends in science and
industry to regular dinners at his home. At these dinners, it was understood by all the
guests that science and philosophy were to be the topics of the conversation. This group of
friends began to call themselves the “Lunar Society”, because of their habit of meeting on
nights when the moon was full so that they could find their way home easily afterwards.
During the early stages of the Industrial Revolution, the Lunar Society of Birmingham
played a role in the development of scientific ideas which was almost as important as the role
played by the Royal Society of London at the time of Isaac Newton. Among the members
of this group of friends, besides Erasmus Darwin and James Watt, were the inventive
and artistic pottery manufacturer, Josiah Wedgwood (the other grandfather of Charles
Darwin), and the author, chemist and Unitarian minister, Joseph Priestley (1733-1804).
Joseph Priestley’s interests were typical of the period: The center of scientific attention
had shifted from astronomy to the newly-discovered phenomena of electricity, heat and
chemistry, and to the relationship between them. Priestley, who was a prolific and popular
author of books on many topics, decided to write a History of Electricity. He not only
collected all the results of previous workers in an organized form, but also, while repeating
their experiments, he made a number of original discoveries. For example, Joseph Priestley
was the first to discover the inverse square law of attraction and repulsion between electrical
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charges, a law which was later verified by the precise experiments of Henry Cavendish
(1731-1810) and Charles Coulomb (1736-1806).

The chemistry of gases was also very much in vogue during this period. Joseph Black’s
medical thesis at Edinburgh University had opened the field with an elegant quantitative
treatment of chemical reactions involving carbon dioxide. Black had shown that when
chalk (calcium carbonate) is heated, it is changed into a caustic residue (calcium oxide)
and a gas (carbon dioxide).

Black had carefully measured the weight lost by the solid residue when the gas was
driven off, and he had shown that precisely the same weight was regained by the caus-
tic residue when it was exposed to the atmosphere and reconverted to chalk. His work
suggested not only that weight is conserved in chemical reactions, but also that carbon
dioxide is present in the atmosphere. Black’s work had initiated the use of precise weigh-
ing in chemistry, a technique which later was brought to perfection by the great French
chemist, Anton Lavoisier (1743-1794).

Joseph Priestley, (who had been supplied with a large burning-glass by his brother-in-
law, the wealthy ironmaster, John Wilkinson), carried out an experiment similar to Black’s.
He used the glass to focus the rays of the sun on a sample of what we now call red oxide
of mercury. He collected the gas which was driven off, and tested its properties, recording
that “...what surprized me more than I can well express was that a candle burned in this
air with a remarkably vigorous flame”. He also found that a mouse could live much longer
in the new gas than in ordinary air.

On a trip to France, Priestley communicated these results to Anton Lavoisier, who
named the gas “oxygen” and established fully its connection with combustion and respi-
ration. At almost the same time, the Swedish chemist, Karl Wilhelm Scheele (1742-1786),
discovered oxygen independently.

Joseph Priestley isolated and studied nine other new gases; and he invented the tech-
nique of collecting gases over mercury. This was much better than collecting them over
water, since the gases did not dissolve in mercury. He extended Joseph Black’s studies of
carbon dioxide, and he invented a method for dissolving carbon dioxide in beverages under
pressure, thus becoming the father of the modern soft drink industry!

The tremendous vogue for gas chemistry in the late 18th century can also be seen
in the work of the eccentric multimillionaire scientist, Henry Cavendish, who discovered
hydrogen by dissolving metals in acids, and then showed that when hydrogen is burned
in oxygen, the resulting compound is pure water. Cavendish also combined the nitrogen
in the atmosphere with oxygen by means of electrical sparks. The remaining bubble of
atmospheric gas, which stubbornly refused to combine with oxygen, was later shown to be
a new element - argon.

The great interest in gas chemistry shown by intelligent people of the period can be seen
in Josiah Wedgwood’s suggestions to the painter, George Stubbs, who was commissioned
to make a portrait of Wedgwood’s children:

“The two family pieces I have hinted at, I mean to contain the children only, and
grouped perhaps in some such manner as this - Sukey playing upon her harpsichord with
Kitty singing to her, as she often does, and Sally and Mary Ann upon the carpet in some
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employment suitable to their ages. This to be one picture. The pendant to be Jack
standing at a table making fixable air with the glass apparatus etc., and his two brothers
accompanying him, Tom jumping up and clapping his hands in joy, and surprized at seeing
the stream of bubbles rise up just as Jack has put a little chalk to the acid. Jos with
the chemical dictionary before him in a thoughtful mood; which actions will be exactly
descriptive of their respective characters.”

The force of feudal traditions was still so strong, however, that in spite of Josiah Wedg-
wood’s suggestions, George Stubbs painted the children on horseback, looking precisely like
the children of a traditional landlord. The “fixable air” which Wedgwood mentions was the
contemporary word for carbon dioxide. Josiah Wedgwood’s daughter, Sukey (Susannah),
was destined to become the mother of the greatest biologist of all time, Charles Darwin.

6.7 Adam Smith

One of Joseph Black’s best friends at Glasgow University was the Professor of Moral
Philosophy, Adam Smith. In 1759, Smith published a book entitled The Theory of Moral
Sentiments, which was subtitled: An Essay towards an Analysis of the Principles by which
Men naturally judge concerning the Conduct and Character, first of their Neighbors, and
afterwards of themselves.

In this book, Adam Smith pointed out that people can easily judge the conduct of
their neighbors. They certainly know when their neighbors are treating them well, or
badly. Having learned to judge their neighbors, they can, by analogy, judge their own
conduct. They can tell when they are mistreating their neighbor or being kind by asking
themselves: “Would I want him to do this to me?” As Adam Smith put it:

“Our continual observations upon the conduct of others insensibly lead us to form to
ourselves certain general rules concerning what is fit and proper to be done or avoided...
It is thus the general rules of morality are formed.”

When we are kind to our neighbors, they maintain friendly relations with us; and to
secure the benefits of their friendship, we are anxious to behave well towards other people.
Thus, according to Adam Smith, enlightened self-interest leads men and women to moral
behaviour.

In 1776, Adam Smith published another equally optimistic book, with a similar theme:
The Wealth of Nations. In this book, he examined the reasons why some nations are more
prosperous than others. Adam Smith concluded that the two main factors in prosperity
are division of labor and economic freedom.

As an example of the benefits of division of labor, he cited the example of a pin factory,
where ten men, each a specialist in a particular manufacturing operation, could produce
48,000 pins per day. One man drew the wire, another straightened it, a third pointed the
pins, a fourth put on the heads, and so on. If each man had worked separately, doing
all the operations himself, the total output would be far less. The more complicated the
manufacturing process (Smith maintained), the more it could be helped by division of
labor. In the most complex civilizations, division of labor has the greatest utility.
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Adam Smith believed that the second factor in economic prosperity is economic free-
dom, and in particular, freedom from mercantilist government regulations. He believed
that natural economic forces tend to produce an optimum situation, in which each locality
specializes in the economic operation for which it is best suited.

Smith believed that when each individual aims at his own personal prosperity, the result
is the prosperity of the community. A baker does not consciously set out to serve society
by baking bread - he only intends to make money for himself; but natural economic forces
lead him to perform a public service, since if he were not doing something useful, people
would not pay him for it. Adam Smith expressed this idea in the following way:

“As every individual, therefore, endeavours as much as he can, both to employ his
capital in support of domestic industry, and so to direct that industry that its produce
may be of greatest value, each individual necessarily labours to render the annual revenue
of the Society as great as he can.”

“He generally, indeed, neither intends to promote the public interest, nor knows how
much he is promoting it. By preferring the support of domestic to that of foreign industry,
he intends only his own security; and by directing that industry in such a manner as its
produce may be of the greatest value, he intends only his own gain; and he is in this, as
in many other cases, led by an invisible hand to promote an end which was no part of his
intention. Nor is it always the worse for Society that it was no part of it. By pursuing his
own interest, he frequently promotes that of society more effectively than when he really
intends to promote it.”

In Adam Smith’s optimistic view, an “invisible hand” guides individuals to promote the
public good, while they consciously seek only their own gain. This vision was enthusiasti-
cally adopted adopted by the vigorously growing industrial nations of the west. It is the
basis of much of modern history; but there proved to be shortcomings in Smith’s theory.
A collection of individuals, almost entirely free from governmental regulation, each guided
only by his or her desire for personal gain - this proved to be a formula for maximum eco-
nomic growth; but certain modifications were needed before it could lead to widely shared
happiness and social justice.

The dark, Satanic mills

Both Matthew Boulton and Josiah Wedgwood were model employers as well as pioneers
of the factory system. Matthew Boulton had a pension scheme for his men, and he made
every effort to insure that they worked under comfortable conditions. However, when he
died in 1809, the firm of Boulton and Watt was taken over by his son, Matthew Robbinson
Boulton, in partnership with James Watt Jr.. The two sons did not have their fathers’
sense of social responsibility; and although they ran the firm very efficiently, they seemed
to be more interested in profit-making than in the welfare of their workers.

A still worse employer was Richard Arkwright (1732-1792), who held patents on a series
of machines for carding, drawing and spinning silk, cotton, flax and wool. He was a rough,
uneducated man, who rose from humble origins to become a multimillionaire by driving
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himself almost as hard as he drove his workers. Arkwright perfected machines (invented
by others) which could make extremely cheap and strong cotton thread; and as a result, a
huge cotton manufacturing industry grew up within the space of a few years. The growth
of the cotton industry was especially rapid after Arkwright’s patent expired in 1785.

Crowds of workers, thrown off the land by the Enclosure Acts, flocked to the towns,
seeking work in the new factories. Wages fell to a near-starvation level, hours of work in-
creased, and working conditions deteriorated. Dr. Peter Gaskell, writing in 1833, described
the condition of the English mill workers as follows:

“The vast deterioration in personal form which has been brought about in the manu-
facturing population during the last thirty years... is singularly impressive, and fills the
mind with contemplations of a very painful character... Their complexion is sallow and
pallid, with a peculiar flatness of feature caused by the want of a proper quantity of adipose
substance to cushion out the cheeks. Their stature is low - the average height of men being
five feet, six inches... Great numbers of the girls and women walk lamely or awkwardly...
Many of the men have but little beard, and that in patches of a few hairs... (They have)
a spiritless and dejected air, a sprawling and wide action of the legs...”

“Rising at or before daybreak, between four and five o’clock the year round, they
swallow a hasty meal or hurry to the mill without taking any food whatever... At twelve
o’clock the engine stops, and an hour is given for dinner... Again they are closely immured
from one o’clock till eight or nine, with the exception of twenty minutes, this being allowed
for tea. During the whole of this long period, they are actively and unremittingly engaged
in a crowded room at an elevated temperature.”

Dr. Gaskell described the housing of the workers as follows:

“One of the circumstances in which they are especially defective is that of drainage
and water-closets. Whole ranges of these houses are either totally undrained, or very
partially... The whole of the washings and filth from these consequently are thrown into
the front or back street, which, often being unpaved and cut into deep ruts, allows them
to collect into stinking and stagnant pools; while fifty, or even more than that number,
having only a single convenience common to them all, it is in a very short time choked
with excrementous matter. No alternative is left to the inhabitants but adding this to the
already defiled street.”

“It frequently happens that one tenement is held by several families... The demoralizing
effects of this utter absence of domestic privacy must be seen before they can be thoroughly
appreciated. By laying bare all the wants and actions of the sexes, it strips them of outward
regard for decency - modesty is annihilated - the father and the mother, the brother and
the sister, the male and female lodger, do not scruple to commit acts in front of each other
which even the savage keeps hid from his fellows.”

“Most of these houses have cellers beneath them, occupied - if it is possible to find a
lower class - by a still lower class than those living above them.”

The abuse of child labor was one of the worst features of early industrialism in England.
Sometimes small children, starting at the age of six or seven, were forced to work, because
wages were so low that the family would otherwise starve; and sometimes the children were
orphans, taken from parish workhouses. The following extract from John Fielden’s book,
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The Curse of the Factory System (1836), describes the condition of young children working
in the cotton industry:

“It is well known that Arkwright’s (so called at least) inventions took manufactures
out of the cottages and farmhouses of England... and assembled them in the counties
of Derbyshire, Nottinghamshire and more particularly, in Lancashire, where the newly-
invented machinery was used in large factories built on the side of streams capable of
turning the water wheel. Thousands of hands were suddenly required in these places,
remote from towns.”

“The small and nimble fingers of children being by far the most in request, the custom
instantly sprang up of procuring ‘apprentices’ from the different parish workhouses of
London, Birmingham and elsewhere... Overseers were appointed to see to the works, whose
interest it was to work the children to the utmost, because their pay was in proportion to
the quantity of work which they could exact.”

“Cruelty was, of course, the consequence; and there is abundant evidence on record to
show that in many of the manufacturing districts, the most heart-rending cruelties were
practiced on the unoffending and friendless creatures... that they were flogged, fettered
and tortured in the most exquisite refinement of cruelty, that they were, in many cases,
starved to the bone while flogged to their work, and that even in some instances they
were driven to commit suicide... The profits of manufacture were enormous; but this only
whetted the appetite it should have satisfied.”

One of the arguments which was used to justify the abuse of labor was that the alter-
native was starvation. The population of Europe had begun to grow rapidly for a variety
of reasons: - because of the application of scientific knowledge to the prevention of disease;
because the potato had been introduced into the diet of the poor; and because bubonic
plague had become less frequent after the black rat had been replaced by the brown rat,
accidentally imported from Asia.

It was argued that the excess population could not be supported unless workers were
employed in the mills and factories to produce manufactured goods, which could be ex-
changed for imported food. In order for the manufactured goods to be competitive, the
labor which produced them had to be cheap: hence the abuses. (At least, this is what was
argued).

Overpopulation

When the facts about the abuse of industrial workers in England became known, there
were various attempts to explain what had gone wrong with the optimistic expectations
of the Enlightenment. Among the writers who discussed this problem was the economist
David Ricardo (1772-1823). In his book, The Principles of Political Economy and Tazation
(1817), Ricardo proposed his “iron law of wages”.

According to Ricardo, labor is a commodity, and wages are determined by the law of
supply and demand: When wages fall below the starvation level, the workers’ children die.
Labor then becomes a scarce commodity, and the wages rise. On the other hand, when
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wages rise above the starvation level, the working population multiplies rapidly, labor
becomes a plentiful commodity, and wages fall again. Thus, according to Ricardo, there is
an “iron law” which holds wages at the minimum level at which life can be supported.

Ricardo’s reasoning assumes industrialists to be completely without social conscience
or governmental regulation; it fails to anticipate the development of trade unionism; and it
assumes that the working population will multiply without restraint as soon as their wages
rise above the starvation level. This was an accurate description of what was happening
in England during Ricardo’s lifetime, but it obviously does not hold for all times and all
places.

A more general and complete description of the situation was given by Thomas Robert
Malthus (1766-1834). Malthus came from an intellectual family: His father, Daniel Malthus,
was a friend of Rousseau, Hume and Goodwin. The famous book on population by the
younger Malthus grew out of his conversations with his father.

Daniel Malthus was an enthusiastic believer in the optimistic philosophy of the En-
lightenment. Like Goodwin, Condorcet and Voltaire, he believed that the application of
scientific progress to agriculture and industry would inevitably lead humanity forward to
a golden age. His son, Robert, was more pessimistic. He pointed out that the benefits of
scientific progress would probably be eaten up by a growing population.

At his father’s urging, Robert Malthus developed his ideas into a book, An Essay on the
Principle of Population, which he published anonymously in 1798. In this famous book,
Malthus pointed out that under optimum conditions, every biological population, includ-
ing that of humans, is capable of increasing exponentially. For humans under optimum
conditions, the population can double every twenty-five years, quadruple every fifty years
and increase by a factor of 8 every seventy-five years. It can grow by a factor of 16 every
century, and by a factor of 256 every two centuries, and so on.

Obviously, human populations cannot increase at this rate for very long, since if they
did, the earth would be completely choked with people in a very few centuries. Therefore,
Malthus pointed out, various forces must be operating to hold the population in check.
Malthus listed first the “positive checks” to population growth - disease, famine and war
- which we now call the “Malthusian forces”. In addition, he listed checks of another kind
- birth control (which he called “Vice”), late marriage, and “Moral Restraint”. Being a
clergyman, Malthus naturally favored moral restraint.

According to Malthus, a population need not outrun its food supply, provided that
late marriage, birth control or moral restraint are practiced; but without these less painful
checks, the population will quickly grow to the point where the grim Malthusian forces -
famine, disease and war - begin to act.

Curiously, it was France, a Catholic country, which led the way in the development of
birth control. Robert Owen (who was an enlightened English industrialist, and the founder
of the cooperative movement), wished to advise his workers about birth control; and so
he went to France to learn about the techniques practiced there. In 1825, an article (by
Richard Carlile) appeared in The Republican. The article described the importation of
birth control from France to England as follows:

“...It was suggested to Mr. Owen that, in his new establishments, the healthy state of
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the inhabitants would tend to breed an excess of children. The matter was illustrated and
explained to him, so that he felt the force of it. He was told that on the Continent, the
women used some means of preventing conception which were uniformly successful. Mr.
Owen set out for Paris to discover the process. He consulted the most eminent physicians,
and assured himself of what was the common practice among their women.”

“...A piece of soft sponge is tied by a bobbin or penny ribbon, and inserted before
sexual intercourse takes place, and is withdrawn again as soon as it has taken place... If
the sponge be large enough, that is, as large as a green walnut or a small apple, it will
prevent conception, without diminishing the pleasures of married life.”

Carlile goes on to say:

“...When the number of working people in any trade or manufacture has for some years
been too great, wages are reduced very low, and the working people become little better
than slaves... By limiting the number of children, the wages of both children and grown
persons will rise; and the hours of working will be no more than they ought to be.”

Birth control and late marriage have (until now) kept the grim predictions of Ricardo
and Malthus from being fulfilled in the developed industrial nations of the modern world.
Most of these nations have gone through a process known as the “demographic transition”
- the shift from an equilibrium where population growth is held in check by the Malthusian
forces of disease, starvation and war, to one where it is held in check by birth control and
late marriage.

The transition begins with a fall in the death rate, caused by various factors, among
which the most important is the application of scientific knowledge to the prevention of
disease. Cultural patterns require some time to adjust to the lowered death rate, and so
the birth rate continues to be high. Families continue to have six or seven children, just as
they did when most of the children died before having children of their own. Therefore, at
the start of the demographic transition, the population increases sharply. After a certain
amount of time, however, cultural patterns usually adjust to the lowered death rate, and
a new equilibrium is established, where both the birth rate and the death rate are low.

In Europe, this period of adjustment required about two hundred years. In 1750, the
death rate began to fall sharply: By 1800, it had been cut in half, from 35 deaths per
thousand people in 1750 to 18 in 1800; and it continued to fall. Meanwhile, the birth
rate did not fall, but even increased to 40 births per thousand per year in 1800. Thus the
number of children born every year was more than twice the number needed to compensate
for the deaths!

By 1800, the population was increasing by more than two percent every year. In 1750,
the population of Europe was 150 million; by 1800, it was roughly 220 million; by 1950 it
had exceeded 540 million, and in 1970 it was 646 million.

Meanwhile the achievements of medical science and the reduction of the effects of
famine and warfare had been affecting the rest of the world: In 1750, the non-European
population of the world was only 585 million. By 1850 it had reached 877 million. During
the century between 1850 and 1950, the population of Asia, Africa and Latin America
more than doubled, reaching 1.8 billion in 1950. In the twenty years between 1950 and
1970, the population of Asia, Africa and Latin America increased still more sharply, and in
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1970, this segment of the world’s population reached 2.6 billion, bringing the world total
to 3.6 billion. The fastest increase was in Latin America, where population almost doubled
during the twenty years between 1950 and 1970.

The latest figures show that the population explosion is leveling off in Europe, Russia,
North America and Japan, where the demographic transition is almost complete. However,
the population of the rest of the world is still increasing at a breakneck speed; and it cannot
continue to expand at this rate for very much longer without producing widespread famine.

6.8 Colonialism

In the 18th and 19th centuries, the continually accelerating development of science and
science-based industry began to affect the whole world. As the factories of Europe poured
out cheap manufactured goods, a change took place in the patterns of world trade: Before
the Industrial Revolution, trade routes to Asia had brought Asian spices, textiles and
luxury goods to Europe. For example, cotton cloth and fine textiles, woven in India, were
imported to England. With the invention of spinning and weaving machines, the trade
was reversed. Cheap cotton cloth, manufactured in England, began to be sold in India,
and the Indian textile industry withered.

The rapid development of technology in the west also opened an enormous gap in
military strength between the industrialized nations and the rest of the world. Taking
advantage of their superior weaponry, the advanced industrial nations rapidly carved the
remainder of the world into colonies, which acted as sources of raw materials and food,
and as markets for manufactured goods.

In North America, the native Indian population had proved vulnerable to European
diseases, such as smallpox, and large numbers of them had died. The remaining Indians
were driven westward by streams of immigrants arriving from Europe. In Central and
South America, European diseases proved equally fatal to the Indians.

Often the industrialized nations made their will felt by means of naval bombardments:
In 1854, Commodore Perry and an American fleet forced Japan to accept foreign traders
by threatening to bombard Tokyo. In 1856, British warships bombarded Canton in China
to punish acts of violence against Europeans living in the city. In 1864, a force of Euro-
pean and American warships bombarded Choshu in Japan, causing a revolution. In 1882,
Alexandria was bombarded, and in 1896, Zanzibar.

Between 1800 and 1875, the percentage of the earth’s surface under European rule
increased from 35 percent to 67 percent. In the period between 1875 and 1914, there was a
new wave of colonial expansion, and the fraction of the earth’s surface under the domination
of colonial powers (Europe, the United States and Japan) increased to 85 percent, if former
colonies are included.

During the period between 1880 and 1914, English industrial and colonial dominance
began to be challenged. Industrialism had spread from England to Belgium, Germany
and the United States, and, to a lesser extent, to France, Italy, Russia and Japan. By
1914, Germany was producing twice as much steel as Britain, and the United States was
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producing four times as much.

New techniques in weaponry were introduced, and a naval armaments race began among
the major industrial powers. The English found that their old navy was obsolete, and they
had to rebuild. Thus, the period of colonial expansion between 1880 and 1914 was filled
with tensions, as the industrial powers raced to arm themselves in competition with each
other, and raced to seize as much as possible of the rest of the world.

Much that was beautiful and valuable was lost, as mature traditional cultures col-
lapsed, overcome by the power and temptations of modern industrial civilization. For the
Europeans and Americans of the late 19th century and early 20th century, progress was a
religion, and imperialism was its crusade. The cruelties of the crusade were justified, in the
eyes of the westerners, by their mission to “civilize” and Christianize the rest of the world.
To a certain extent, the industrial countries were right in feeling that they had something
of value to offer to the rest of the world; and among the people whom they sent out were
educators and medical workers who often accepted lives of extreme discomfort and danger
in order to be of service.

At the beginning of the 19th century, the world was divided into parts: China was a
world in itself; India was a separate world; Africa south of the Sahara was another enclosed
world; and the Islamic world was also self-contained, as was the west. By 1900, there was
only one world, bound together by constantly-growing ties of trade and communication.

6.9 Trade Unions and minimum wage laws

Robert Owen and social reform

During the early phases of the Industrial Revolution in England, the workers suffered
greatly. Enormous fortunes were made by mill and mine owners, while workers, including
young children, were paid starvation wages for cruelly long working days. However, trade
unions, child labor laws, and the gradual acceptance of birth control finally produced a
more even distribution of the benefits of industrialization.

One of the most interesting pioneers of these social reforms was Robert Owen (1771-
1858), who is generally considered to have been the father of the Cooperative Movement.
Although in his later years not all of his projects developed as he wished, his life started
as an amazing success story. Owen’s life is not only fascinating in itself; it also illustrates
some of the reforms that occurred between 1815 and 1850.

Robert Owen was born in Wales, the youngest son of a family of iron-mongers and
saddle-makers. He was a very intelligent boy, and did well at school, but at the age of 9,
he was apprenticed to a draper, at first in Wales. Later, at the age of 11, he was moved
to London, where he was obliged to work eighteen hours a day, six days a week, with
only short pauses for meals. Understandably, Robert Owen found this intolerable, and he
moved again, this time to Manchester, where he again worked for a draper.

While in Manchester, Robert Owen became interested in the machines that were begin-
ning to be used for spinning and weaving. He borrowed a hundred pounds from his brother,
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and entered (as a partner) a small business that made these machines. After two years of
moderate success as a small-scale industrialist, Owen saw the newspaper advertisement of
a position for manager of a large spinning mill, owned by a Mr. Drinkwater.

“I put on my hat”, Owen wrote later, “and proceeded straight to Mr. Drinkwater’s
counting house. ‘How old are you?’ ‘T'wenty this May’, was my reply. ‘How often do you
get drunk in the week?’... ‘I was never’, I said, ‘drunk in my life.” blushing scarlet at this
unexpected question. ‘What salary do you ask?” ‘Three hundred a year’, was my reply.
‘What?’, Mr. Drinkwater said with some surprise, repeating the words, ‘Three hundred
pounds! I have had this morning I know not how many seeking the situation and I do not
think that all of their askings would amount to what you require.” ‘I cannot be governed
by what others seek’, said I, ‘and I cannot take less.’

Apparently impressed by Robert Owen’s success as a small-scale industrialist, and
perhaps also impressed by his courage, Mr. Drinkwater hired him. Thus, at the age of 19,
Owen became the manager of a large factory. Mr. Drinkwater had no cause to regret his
decision, since his new manager quickly became the boy wonder of Manchester’s textile
community. Within six months, Drinkwater offered Owen a quarter interest in his business.

After several highly successful years in his new job, Robert Owen heard of several mills
that were for sale in the village of New Lanark, near to Glasgow. The owner, Mr. Dale,
happened to be the father of the girl with whom Robert Owen had fallen in love. Instead
of directly asking Dale for permission to marry his daughter, Owen (together with some
business partners) first purchased the mills, after which he won the hand of the daughter.

Ownership of the New Lanark mills gave Robert Owen the chance to put into practice
the ideas of social reform that he had been developing throughout his life. Instead of
driving his workers by threats of punishment, and instead of subjecting them to cruelly
long working hours (such as he himself had experienced as a draper’s apprentice in London),
Owen made the life of his workers at New Lanark as pleasant as he possibly could. He
established a creche for the infants of working mothers, free medical care, concerts, dancing,
music-making, and comprehensive education, including evening classes. Instead of the
usual squalid one-room houses for workers, neat two-room houses were built. Garbage
was collected regularly instead of being thrown into the street. New Lanark also featured
pleasant landscaped areas.

Instead of leading to bankruptcy, as many of his friends predicted, Robert Owen’s
reforms led to economic success. Owen’s belief that a better environment would lead to
better work was vindicated. The village, with its model houses, schools and mills, became
internationally famous as a demonstration that industrialism need not involve oppression
of the workers. Crowds of visitors made the journey over narrow roads from Glasgow to
learn from New Lanark and its visionary proprietor. Among the twenty thousand visitors
who signed the guest-book between 1815 and 1825 were the Grand Duke Nicholas of Russia
(who later became Czar Nicholas I), and Princes John and Maximilian of Austria.

Robert Owen’s ideas of social reform can be seen in the following extract from an
“Address to the Inhabitants of New Lanark”, which he presented on New Year’s Day,
1616: “What ideas individuals may attach to the term ‘Millennium’ I know not; but I
know that society may be formed so as to exist without crime, without poverty, with
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Figure 6.10: New Lanark World Heritage village in Scotland. A view of the
school.

health greatly improved, with little, if any, misery. and with intelligence and happiness
increased a hundredfold; and no obstacle whatsoever intervenes at this moment except
ignorance to prevent such a state of society from becoming universal.”

Robert Owen believed that these principles could be applied not only in New Lanark
but also in the wider world. He was soon given a chance to express this belief. During
the years from 1816 to 1820, apart from a single year, business conditions in England were
very bad, perhaps as a result of the Napoleonic Wars, which had just ended. Pauperism
and social unrest were widespread, and threatened to erupt into violence. A committee to
deal with the crisis was formed under the leadership of the Dukes of Kent and York.

Because of Owen’s reputation, he was asked for his opinion, but the committee was
hardly expecting the answer that they received from him. Robert Owen handed the two
Dukes and the other committee members a detailed plan for getting rid of pauperism by
making paupers productive. They were to be settled in self-governing Villages of Coop-
eration, each with between 800 and 1,200 inhabitants. Each family was to have a private
apartment, but there were to be common sitting rooms, reading rooms and kitchens. Near
to the houses, there were to be gardens tended by the children, and farther out, fields to
be cultivated by the adults. Still farther from the houses, there was to be a small factory.

Owen’s idea for governmentally-planned paupers’ collectives was at first rejected out of
hand. The early 19th century was, after all, a period of unbridled laissez-faire economics.
Owen then bombarded the Parliament with pamphlets advocating his scheme. Finally a
committee was formed to try to raise the money to establish one Village of Cooperation
as an experiment; but the money was never raised.
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Unwilling to accept defeat, Robert Owen sold his interest in New Lanark and sailed
for America, where he believed that his social experiment would have a better chance of
success. He bought the town of Harmonie and 30,000 acres of land on the banks of the
Wabash River in Indiana. There he established a Village of Cooperation which he named
“New Harmony”. He dedicated it on the 4th of July, 1826. It remained a collective for
only two years, after which individualism reasserted itself. Owen’s four sons and one of his
daughters made their homes in New Harmony, and it also became the home of numerous
scientists, writers and artists.

Owen’s son, Robert Dale Owen, became a member of the U.S. House of Representatives,
where he introduced the bill establishing the Smithsonian Institution. In 1862 he wrote an
eloquent letter to Abraham Lincoln urging emancipation of the slaves. Three days later,
probably influenced by Owen’s letter, Lincoln read the Emancipation Proclamation to his
cabinet. Another son, Richard Owen, served as President of the University of Indiana, and
was later elected as the first President of Purdue University.

When Robert Owen returned to England shortly after dedicating New Harmony, he
found that he had become a hero of the working classes. They had read his writings
avidly, and had begun to establish cooperatives, following his principles. There were both
producer’s cooperatives and consumer’s cooperatives. In England, the producer’s cooper-
atives failed, but in Denmark they succeeded?

One of the early consumer’s cooperatives in England was called the Rochdale Society
of Equitable Pioneers. It was founded by 28 weavers and other artisans, who were being
forced into poverty by mechanization. They opened a small cooperative store selling butter,
sugar, flour, oatmeal and candles. After a few months, they also included tobacco and tea.
From this small beginning, the Cooperative Movement grew, finally becoming one of the
main pillars of the British Labour Party.

Robert Owen’s attention now turned from cooperatives to the embryonic trade union
movement, which was struggling to establish itself in the face of fierce governmental opposi-
tion. He assembled the leaders of the working class movement and proposed the formation
of the “Grand National Moral Union of Productive and Useful Classes”. The name was
soon shortened to “The Grand National Consolidated Trades Union” or simply the “Grand
National”.

Owen’s Grand National was launched in 1833, and its membership quickly grew to half
a million. It was the forerunner of modern nationwide trade unions, but it lasted only
two years. Factory-owners saw the Grand National as a threat, and they persuaded the
government to prosecute it under anti-union laws. Meanwhile, internal conflicts helped to
destroy the Grand National. Owen was accused of atheism by the working class leaders,
and he accused them of fermenting class hatred.

Robert Owen’s influence helped to give raw laissez faire capitalism a more human face,
and helped to spread the benefits of industrialization more widely. Through the work of
other reformers like Owen, local trade unions succeeded, both in England and elsewhere;

2The success of Danish agricultural producer’s cooperatives was helped by the People’s High School
movement, founded by N.F.S. Grundvig (1783-1872).
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Figure 6.11: Robert Owen, (1771-1858), founder of the Cooperative Movement.
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and in the end, successful national unions were finally established. The worst features of the
early Industrial Revolution were moderated by the growth of the trade union movement,
by child labor laws, by birth control and by minimum wage laws.

Rusting of the Iron Law

David Ricardo’s Iron Law of Wages maintained that workers must necessarily live at the
starvation level: Their wages are determined by the law of supply and demand, Ricardo
said. If the wages should increase above the starvation level, more workers’ children would
survive, the supply of workers would increase, and the wages would fall again. This gloomy
pronouncement was enthusiastically endorsed by members of the early 19th century Estab-
lishment, since it absolved them from responsibility for the miseries of the poor. However,
the passage of time demonstrated that the Iron Law of Wages held only under the assump-
tion of an economy totally free from governmental intervention.

Both the growth of the political power of industrial workers, and the gradual acceptance
of birth control were important in eroding Ricardo’s Iron Law. Birth control is especially
important in countering the argument used to justify child labor under harsh conditions.
The argument (still used in many parts of the world) is that child labor is necessary in
order to save the children from starvation, while the harsh conditions are needed because
if a business provided working conditions better than its competitors, it would go out of
business. However, with a stable population and appropriate social legislation prohibiting
both child labor and harsh working conditions, the Iron Law argument fails.

6.10 Rising standards of living

Since the year 1000, world population has risen 22-fold, global per capita Gross Domestic
Product 13-fold, and world GDP nearly 300-fold. These data come from Angus Maddison’s
recent book, World Population, GDP and Per Capita GDP, 1-2003. More detailed data,
from a report that Prof. Maddison presented to the British House of Lords, are shown in
Tables 5.1 and 5.2.

During the period between 1820 and 2001, the average years of education per person
employed increased from 2.00 years to 15.45 years in the United Kingdom, from 1.75 years
to 20.21 years in the United States, and from 1.50 years to 16.61 years in Japan. This
increased education in the highly industrialized countries was necessary because of the
complexity of modern machines and modern life.

Today, most citizens of the industrialized countries have lives of greatly-increased plea-
sure and freedom compared with the lives of their great-grandparents. Furthermore, their
lives are also remarkably easy and pleasant compared with the remainder of the world. In
later chapters we will try to discuss to what extent this privileged life-style is sustainable.
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Table 6.1: GDP per capita (1990 int. $). Data from Maddison.

1900 1950 1990 2001
W. Europe 2,893 4,579 15,966 19,256
USA 4,091 9,561 23,201 27,948
Ca.,Au.,NZ 3,435 7,424 17,902 21,718
Japan 1,180 1,921 18,789 20,683
E. Europe 1,438 2,111 5,450 6,207
fUSSR 1,237 2,841 6,878 4,626
L. America 1,109 2,506 5,053 5,811
China 545 439 1,858 3,583
India 599 619 1,309 1,957
Other Asia 802 919 3,084 3,997
Africa 601 894 1,444 1,489

World 1,262 2,111 5,157 6,049
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Table 6.2: Gross stock of machinery and equipment per capita (1990 $). Data from
Maddison. These figures are a measure of the degree of industrialization of the countries
shown. Similar increases occurred in the gross stock of non-residential structures per capita.
For example, in the USA the value of these structures increased from $1,094 (1990 $) in
1820 to $36,330 in 2001. In Japan there was a dramatic increase during the 20th century,
from $852 per capita in 1913 to $57,415 in 2001.

UK USA Japan
1820 92 87 na
1870 334 489 94
1913 878 2,749 329
1950 2,122 6,110 1,381
1973 6,203 10,762 6,431

2001 16,082 30,600 32,929
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6.11 Robber barons and philanthropists

“Hain’t I got the power?”

We can experience some of the flavor of early American industrial growth by looking at
the life of Cornelius Vanderbilt (1794-1877). In those days, the United States was a place
where a man with luck, intelligence and energy, could start with nothing and become a
multimillionaire. That is exactly what Vanderbilt did.

Vanderbilt was born into a poor New York family. He quit school at 11 to help his
father, and later remarked, “If I had learned education, I wouldn’t have had time to learn
anything else.” At 16 he started his first business, using $100 borrowed from his mother -
a small ferry boat between New York and Staten Island, charging 18 cents per trip. The
business succeeded because of the fair price that he charged and because of his prodigious
work. Within a year, he was able to give his mother $1,000 in return for her loan.

During the War of 1812, Vanderbilt had a government contract to sail supplies to forts
in the New York area. He was by then operating a small fleet of sailing schooners, and as
a consequence he received the nickname, “Commodore”.

Cornelius Vanderbilt then became interested in steamships, but Robert Fulton and
Robert Livingston had been granted a 30-year monopoly on the steamboat trade. This
did not stop Vanderbilt. He started a competing steam line, and his boat evaded capture.
Finally a Supreme Court decision broke the Fulton-Livingston monopoly. By the 1840’s,
Vanderbilt was operating about 100 steamships, and his business had the most employees
of any in the United States.

Turning his attention to railways, Vanderbilt bought several lines, including the New
York and Harlem Railroad, the Hudson River Railroad, and the New York Central Railroad.
He extended his lines as far as Chicago, and attempted to acquire the Erie Railroad. This
brought him into conflict with the unscrupulous financier Jim Fisk. Vanderbilt’s methods
were equally rough, so it was a fight with no holds barred. (Cornelius Vanderbilt once
remarked, “What do I care about the law? Hain’t I got the power?”)

At the time of his death, Cornelius Vanderbilt was one of the richest men in the United
States, with a fortune of over $100,000,000. He left most of this amount to his son William
Pl but gave one million to Central University, which then became Vanderbilt University.

Carnegie’s philanthropies

We can contrast Vanderbilt’s relatively small interest in philanthropy with Andrew Carnegie’s
large-scale efforts for public improvement. Like Vanderbilt, Andrew Carnegie (1835-1919)
was a self-made multimillionaire, but after making a fortune in oil wells, steel, iron ore and
railways, he gave almost all of his money away. Early in his career, he wrote:

“I propose to take an income no greater than $50,000 per annum! Beyond this I need
never earn, make no effort to increase my fortune, but spend the surplus each year for
benevolent purposes! Let us cast aside business forever, except for others. Let us settle in

3William Vanderbilt is best remembered for his remark, “The public be damned!”
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Figure 6.12: Cornelius “Commodore” Vanderbilt.
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Figure 6.13: Andrew Carnegie circa 1878.
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Figure 6.14: A Bessemer converter, used in making steel.

Oxford, and I shall get a thorough education, making the acquaintance of literary men...
To continue much longer overwhelmed by business cares and with most of my thoughts
wholly upon the way to make more money in the shortest time, must degrade me beyond
hope of permanent recovery.”

When he sold his share of the United States Steel Corporation in 1901, Andrew Carnegie
became one of the wealthiest men in the world. He devoted the remainder of his life to
educational projects and to philanthropy. He established a large number of public libraries,
not only in the United Kingdom and in the United States, but also in Canada, Ireland,
Australia, New Zealand, the West Indies and Fiji. In all, Carnegie established 3,000
libraries. In addition, he founded the Carnegie Institution in Washington D.C. and the
Carnegie Institute of Technology in Pittsburgh, which later became the Carnegie Mellon
University.

In Scotland, his birthplace, where he lived for part of each year, Andrew Carnegie es-
tablished a trust to assist in university education. In recognition of this generous gift (and
perhaps also in recognition of his authorship of a number of books and articles), Andrew
Carnegie was elected Lord Rector of the University of St. Andrews. Carnegie also gave
a large amount of money to Booker T. Washington’s Tuskegee Institute. He established
generous pension funds for his former employees, and also for American university profes-
sors. As if all this were not enough, he paid for the construction of 7,000 church organs,
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contributed to the erection of the Peace Palace at the Hague, and established the Carnegie
Foundation, which continues to perform good works, especially in the field of education.

In the lives of Cornelius Vanderbilt and Andrew Carnegie we see exemplified some of
the features of the age in which they lived, when ruthless business behavior was often
balanced by splendid acts of public generosity.

6.12 The conflict between capitalism and communism

The Russian Revolution

Industrialism in Russia started more slowly than in Europe and the United States. The
emancipation of the surfs in 1861 by Czar Alexander II was incompletely carried out
in practice, and Russia remained, to a large extent, in the grip of feudal absolutism.
Dissatisfaction with the slowness of reform led to a series of protests. On January 22, 1905
(Bloody Sunday), a group of marchers in St. Petersburg brought a petition to the Winter
Palace, hoping to hand it to the Czar. The petition called for improvement of working
conditions, democratic elections, and establishment of a constituent assembly. Without
the Tzar’s knowledge (he was not in St. Petersburg at the time), government troops fired
on the marchers, and about 1,000 were killed.

Between 1905 and 1908, strikes and peasant disorders occurred throughout Russia. The
revolt of sailors on the Battleship Potemkin, upon which Sergei Eisenstein based his famous
film, also occurred at this time.

In 1914, Russia entered the First World War on the side of England and France. The
Russian troops were badly supplied, and suffered heavy casualties. With the soldiers absent
from their fields, some of the larger Russian cities were threatened with famine.

By February, 1917, dissatisfaction had reached such a level that a total general strike
occurred in St Petersburg. Instead of putting down this strike, weary Russian soldiers
supported it, handing over their weapons to members of the angry crowds. These events
lead to the abdication of Czar Nicholas II, who handed over power to the Kerensky Provi-
sional Government. In October, 1917, the Bolsheviks under the leadership of V.I. Lenin,
gained power. Lenin had been exile in Switzerland before returning to lead the October
Revolution, and he was a follower of the communist economist, Karl Marx.

The First Red Scare; McCarthyism; the Cold War

There were two distinct periods of violent anti-communism in the United States. The
“First Red Scare” occurred between 1917 and 1920, while “McCarthyism” began in the
late 1940’s and lasted until the late 1950’s.

The “First Red Scare” was largely inspired by the fear that the 1917 revolution in Russia
would spread to the United States. In 1919, a bomb plot was uncovered; bombs were to be
sent through the post to 36 prominent Americans, including John Pierpont Morgan, John
D. Rockefeller and Supreme Court Justice Oliver Wendell Holmes. The year 1919 was also
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characterized by hundreds of strikes throughout the United States. Newspapers described
the strikes as communist plots, and the FBI arrested several thousand suspected agitators.

The McCarthy era occurred after World War II. The United States emerged from the
war as the only major industrial power whose infrastructure had not been destroyed by the
war. Thus the US found itself thrust somewhat reluctantly and nervously into a position
of global leadership. Meanwhile a communist revolution had occurred in China, and this
added to US nervousness, as did the Soviet development of nuclear weapons.

Senator Joseph McCarthy (1908-1957), and the House Un-American Activities Com-
mittee lead an aggressive populistic hunt for communists and “communist sympathizers”.
About 500 Hollywood actors, actresses and screenwriters were blacklisted.

The end of World War II also marked the start of the “Cold War” between capitalist
and communist countries. The most dangerous feature of the Cold War was a nuclear
arms race that resulted in a truly insane number of nuclear weapons. At the height of
this arms race there were over 50,000 nuclear weapons in the world, with a total explosive
power roughly a million times greater than the bomb that destroyed Hiroshima in 1945.
Put another way, the bombs had an explosive power equivalent to 4 tons of TNT for every
person on the planet. The world came close to thermonuclear war on several occasions,
for example during the Cuban Missile Crisis of October, 1962. Although the Cold War
has now ended, about 27,000 nuclear weapons still exist, many of them on hair-trigger
alert. Because of the dangers of accidental nuclear war, nuclear proliferation and nuclear
terrorism, these weapons continue to cast a very dark shadow over the future of humankind.

Capitalism triumphant

After the fall of the Berlin Wall in 1989, and the dissolution of the Soviet Union in 1991,
capitalism spread to much of what had been the communist block of nations. Even China,
although remaining officially a communist state, adopted capitalist methods on an ex-
perimental basis. Adam Smith, the prophet of the free market and of economic growth,
was triumphant. We should notice that despite their differences regarding ownership of
the means of production, capitalists and communists are united in their admiration of
economic growth.

6.13 Globalization

In Chapter 3, we mentioned the exploitation of factory workers during the early phases of
the Industrial Revolution. In the present chapter, we discussed how the growth of trade
unions, the enactment of minimum wage laws, and laws preventing child labor, together
with the gradual acceptance of birth control, led to a more widely-distributed prosperity,
where workers shared the benefits of industrialization.

Today, economic globalization aims at increased trade throughout the world. At first
sight, this seems to be a benefit. However, laws preventing the exploitation of labor are not
universal. Workers in the developed countries can find themselves competing with grossly
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underpaid labor in developing nations. The cure, of course, is to demand universal laws
protecting workers from exploitation. Such laws must be a precondition for free trade.

6.14 Say’s Law

Suburbia

The private automobile is the flagship of industrialism. In 2002, there were more than half
a billion automobiles in the world. Of these, 140 million were in the United States (roughly
one for every two people).

Reliance on private automobiles for transportation has affected the geography of cities,
producing vast highway systems, urban sprawl and suburban life. For example, the Los
Angeles metropolitan area spreads over 4,850 square miles (12,400 km?). Because of the
availability of inexpensive motor fuel, public transportation is almost non-existent in Los
Angeles. It is not uncommon for a citizen of the city to drive several hundred kilometers
during a normal day. Many other cities in the world have a similar dependence on private
automobiles.

A recent Canadian documentary film, The End of Suburbia, explores the history and
probable future of cities built around the availability of inexpensive gasoline. The subtitle
of the film is Oil Depletion and the Collapse of the American Dream.

Keeping up appearances

Of course, if we live in suburbia, we have to keep up with the neighbors. This is hard
to do, because the neighbors keep getting new things - bigger automobiles, motorboats,
swimming pools, and so on. Not only must we keep up with our actual neighbors, we must
also compete with the glamorous lives that we see in films and television.

According to Say’s Law, and according to advertisers and economists, human desires
have no upper limit; there is no limit to growth. Television advertising and billboards
constantly tell us that to be happy, or even respectable, we need to buy more. Thus
mainstream industrial culture thunders ahead, worshiping power, material goods, wealth,
growth and progress. There is, however, a counterculture, which we will look at in the
next chapter.

6.15 Veblen; economics as anthropology

The phrase “conspicuous consumption” was invented by the Norwegian-American econo-
mist Thorstein Veblen (1857-1929) in order to describe the way in which our society uses
economic waste as a symbol of social status. In The Theory of the Leisure Class, first
published in 1899, Veblen pointed out that it is wrong to believe that human economic
behavior is rational, or that it can be understood in terms of classical economic theory. To
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understand it, Veblen maintained, one might preferably make use of insights gained from
anthropology, psychology, sociology, and history.

Thorstein Veblen was born into a large Norwegian immigrant family living on a farm
in Wisconsin. His first language was Norwegian, and in fact he did not learn English well
until he was in his teens. He was a strange boy, precociously addicted to reading, but
negligent about doing his chores on the farm. His family recognized that he was unusually
intelligent and decided to send him to Carlton College, where he obtained a B.A. in 1880.
Later he did graduate work at Johns Hopkins University and finally obtained a Ph.D. from
Yale in 1884.

Despite the Ph.D., he failed to obtain an academic position. His iconoclastic views
and non-conformist attitudes undoubtedly contributed to this joblessness. Returning to
the family farm, Thorstein Veblen continued his voracious reading and his neglect of farm
duties for six years. As one of his brothers wrote, “He was lucky enough to come out of a
race and family who made family loyalty a religion... He was the only loafer in a highly
respectable community... He read and loafed, and the next day he loafed and read.”

An interesting fact about this strange man is that, for some reason, women found him
very attractive. In 1888, Thorstein Veblen married Ellen Rolfe, the niece of the president
of Carlton College. His wife was to leave him many times, partly because of his many
infidelities, and partly because of his aloofness and detachment. He was like a visitor from
another planet.

In part, the marriage to Ellen was motivated by Veblen’s search for a job. He hoped to
obtain work as an economist for the Atchison, Topeka and Santa Fe Railway, of which her
uncle was president. However, the railway was in financial difficulties, and it was taken
over by bankers, after which the position disappeared.

Finally a family council was held on the Veblen farm, and it was decided that Thorstein
should once again attempt to enter the academic world. In 1891, wearing corduroy trousers
and a coonskin hat, he walked into the office of the conservative economist J.L. Laughlan
and introduced himself. Although taken aback by Veblen’s appearance, Laughlan began
to talk with him, and he soon recognized Veblen’s genius. A year later, when he moved to
the University of Chicago, Laughlan brought Veblen with him at a salary of $520 per year.

At the University of Chicago, Veblen soon established a reputation both for eccentricity
and for enormous erudition. His socks were held up by safety pins, but he was reputed
to be fluent in twenty-six languages. He gained attention also by publishing a series of
brilliant essays.

In 1899, Veblen “fluttered the dovecotes of the East” by publishing a book entitled The
Theory of the Leisure Class. 1t was part economics, part anthropology, and part social
satire. Nothing of the kind had ever been seen in the field of economics. Until that mo-
ment it had been universally assumed that human economic behavior is rational. Veblen’s
detached and surgically sharp intelligence exposed it as being very largely irrational.

According to Thorstein Veblen, ancient tribal instincts and attitudes motivate us today,
just as they motivated our primitive ancestors. Veblen speaks of a predatory phase of
primitive society where the strongest fighters were able to subjugate others. This primitive
class structure was based on violence, and, according to Veblen, the attitudes associated
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Figure 6.15: Thorstein Veblen (1857-1929).
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with it persist today.

For example, Veblen noted that male members of the leisure class liked to go about with
walking sticks. Why? Because, answers Veblen, it is “an advertisement that the bearer’s
hands are employed otherwise than in useful effort.” Also, a walking stick is a weapon:
“The handling of so tangible and primitive a means of offense is very comforting to anyone
who is gifted with even a moderate share of ferocity”.

Even in modern society, Veblen says, we have an admiration for those who succeed in
obtaining power and money through predatory means, and this admiration makes honest
and useful work seem degraded. “During the predatory culture”, Veblen wrote, “labour
comes to be associated in men’s habits of thought with weakness and subjugation to a mas-
ter. It is therefore a mark of inferiority, and therefore comes to be accounted to be unworthy
of man in his best estate. By virtue of this tradition, labour is felt to be debasing, and this
tradition has never died out. On the contrary, with the advance of social differentiation it
has acquired the axiomatic force of ancient and unquestioned prescription.”

“In order to gain and hold the esteem of men it is not sufficient merely to possess wealth
or power. The wealth or power must be put in evidence, for esteem is awarded only on
evidence. It is felt by all persons of refined taste that a spiritual contamination is insepara-
ble from certain offices that are conventionally required of servants. Vulgar surroundings,
mean (that is to say, inexpensive) habitations, and vulgarly productive occupations are
unhesitatingly condemned and avoided. They are incompatible with life on a satisfactory
spiritual plane - with ‘high thinking’.”

“...The performance of labour has been accepted as a conventional evidence of inferior
force, therefore it comes by itself, by a mental shortcut, to be regarded as intrinsically
base.”

“The normal and characteristic occupations of the [leisure] class are... government,
war, sports, and devout observances... At this as at any other cultural stage, government
and war are, at least in part, carried out for the pecuniary gain of those who engage in
them, but it is gain obtained by the honourable method of seizure and conversion.”

Veblen also remarks that “It is true of dress even in a higher degree than of most items
of consumption, that people will undergo a very considerable degree of privation in the
comforts or the necessities of life in order to afford what is considered a decent amount of
wasteful consumption; so that it is by no means an uncommon occurrence, in an inclement
climate, for people to go ill clad in order to appear well dressed.”

The sensation caused by the publication of Veblen’s book, and the fact that his phrase,
“conspicuous consumption”, has become part of our language, indicate that his theory did
not completely miss its mark. In fact, modern advertisers seem to be following Veblen’s
advice: Realizing that much of the output of our economy will be used for the purpose
of establishing the social status of consumers, advertising agencies hire psychologists to
appeal to the consumer’s longing for a higher social position.

When possessions are used for the purpose of social competition, demand has no natural
upper limit; it is then limited only by the size of the human ego, which, as we know, is
boundless. This would be all to the good if unlimited economic growth were desirable.
But today, when further growth implies future collapse, industrial society urgently needs
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to find new values to replace our worship of power, our restless chase after excitement, and
our admiration of excessive consumption.

6.16 Gandhi as an economist

If humans are to achieve a stable society in the distant future, it will be necessary for
them to become modest in their economic behavior and peaceful in their politics. For both
modesty and peace, Gandhi is useful as a source of ideas.

Mohandas Karamchand Gandhi was born in 1869 in Porbandar, India. His family
belonged to the Hindu caste of shopkeepers. (In Gujarati “Gandhi” means “grocer”.)
However, the family had risen in status, and Gandhi’s father, grandfather, and uncle had
all served as prime ministers of small principalities in western India.

In 1888, Gandhi sailed for England, where he spent three years studying law at the Inner
Temple in London. Before he left India, his mother had made him take a solemn oath not
to touch women, wine, or meat. He thus came into contact with the English vegetarians,
who included Sir Edward Arnold (translator of the Bhagavad Gita), the Theosophists
Madame Blavatski and Annie Besant, and the Fabians. Contact with this idealistic group
of social critics and experimenters helped to cure Gandhi of his painful shyness, and it also
developed his taste for social reform and experimentation.

Gandhi’s exceptionally sweet and honest character won him many friends in England,
and he encountered no racial prejudice at all. However, when he traveled to Pretoria in
South Africa a few years later, he experienced racism in its worst form. Although he was
meticulously well dressed in an English frock coat, and in possession of a first-class ticket,
Gandhi was given the choice between traveling third class or being thrown off the train.
(He chose the second alternative.) Later in the journey he was beaten by a coach driver
because he insisted on his right to sit as a passenger rather than taking a humiliating
position on the footboard of the coach.

The legal case which had brought Gandhi to South Africa was a dispute between a
wealthy Indian merchant, Dada Abdullah Seth, and his relative, Seth Tyeb (who had
refused to pay a debt of 40,000 pounds, in those days a huge sum). Gandhi succeeded
in reconciling these two relatives, and he persuaded them to settle their differences out of
court. Later he wrote about this experience:

“Both were happy with this result, and both rose in public estimation. My joy was
boundless. I had learnt the true practice of law. I had learnt to find out the better side of
human nature and to enter men’s hearts. I realized that the true function of a lawyer was
to unite parties riven asunder. The lesson was so indelibly burnt into me that a large part
of my time during my twenty years of practice as a lawyer was occupied in bringing about
compromises of hundreds of cases. I lost nothing thereby - not even money, certainly not
my soul.”

Gandhi was about to return to India after the settlement of the case, but at a farewell
party given by Abdullah Seth, he learned of a bill before the legislature which would deprive
Indians in South Africa of their right to vote. He decided to stay and fight against the bill.



6.16. GANDHI AS AN ECONOMIST 249

Gandhi spent the next twenty years in South Africa, becoming the leader of a struggle
for the civil rights of the Indian community. In this struggle he tried “...to find the better
side of human nature and to enter men’s hearts.” Gandhi’s stay in England had given him
a glimpse of English liberalism and English faith in just laws. He felt confident that if
the general public in England could be made aware of gross injustices in any part of the
British Empire, reform would follow. He therefore organized non-violent protests in which
the protesters sacrificed themselves so as to show as vividly as possible the injustice of
an existing law. For example, when the government ruled that Hindu, Muslim and Parsi
marriages had no legal standing, Gandhi and his followers voluntarily went to prison for
ignoring the ruling.

Gandhi used two words to describe this form of protest: “satyagraha” (the force of
truth) and “ahimsa” (non-violence). Of these he later wrote: “I have nothing new to teach
the world. Truth and non-violence are as old as the hills. All that I have done is to try
experiments in both on as vast a scale as I could. In so doing, I sometimes erred and learnt
by my errors. Life and its problems have thus become to me so many experiments in the
practice of truth and non-violence.”

In his autobiography, Gandhi says: “Three moderns have left a deep impression on
my life and captivated me: Raychandbhai (the Indian philosopher and poet) by his living
contact; Tolstoy by his book ‘The Kingdom of God is Within You’; and Ruskin by his
book ‘Unto This Last’.”

Ruskin’s book, “Unto This Last”, which Gandhi read in 1904, is a criticism of modern
industrial society. Ruskin believed that friendships and warm interpersonal relationships
are a form of wealth that economists have failed to consider. He felt that warm human
contacts are most easily achieved in small agricultural communities, and that therefore
the modern tendency towards centralization and industrialization may be a step backward
in terms of human happiness. While still in South Africa, Gandhi founded two religious
Utopian communities based on the ideas of Tolstoy and Ruskin. Phoenix Farm (1904)
and Tolstoy Farm (1910). At this time he also took an oath of chastity (“bramacharya”),
partly because his wife was unwell and he wished to protect her from further pregnancies,
and partly in order to devote himself more completely to the struggle for civil rights.

Because of his growing fame as the leader of the Indian civil rights movement in South
Africa, Gandhi was persuaded to return to India in 1914 and to take up the cause of Indian
home rule. In order to reacquaint himself with conditions in India, he traveled tirelessly,
now always going third class as a matter of principle.

During the next few years, Gandhi worked to reshape the Congress Party into an
organization which represented not only India’s Anglicized upper middle class but also the
millions of uneducated villagers who were suffering under an almost intolerable burden of
poverty and disease. In order to identify himself with the poorest of India’s people, Gandhi
began to wear only a white loincloth made of rough homespun cotton. He traveled to the
remotest villages, recruiting new members for the Congress Party, preaching non-violence
and “firmness in the truth”, and becoming known for his voluntary poverty and humility.
The villagers who flocked to see him began to call him “Mahatma” (Great Soul).

Disturbed by the spectacle of unemployment and poverty in the villages, Gandhi urged



250 A HISTORY OF THE EARTH

Figure 6.16: Gandhi and his wife Kasturbhai in 1902.

the people of India to stop buying imported goods, especially cloth, and to make their
own. He advocated the reintroduction of the spinning wheel into village life, and he often
spent some hours spinning himself. The spinning wheel became a symbol of the Indian
independence movement, and was later incorporated into the Indian flag.

The movement for boycotting British goods was called the “Swadeshi movement”. The
word Swadeshi derives from two Sanskrit roots: Swa, meaning self, and Desh, meaning
country. Gandhi described Swadeshi as “a call to the consumer to be aware of the violence
he is causing by supporting those industries that result in poverty, harm to the workers
and to humans or other creatures.”

Gandhi tried to reconstruct the crafts and self-reliance of village life that he felt had
been destroyed by the colonial system. “I would say that if the village perishes India
will perish too”, he wrote, “India will be no more India. Her own mission in the world
will get lost. The revival of the village is only possible when it is no more exploited.
Industrialization on a mass scale will necessarily lead to passive or active exploitation of
the villagers as problems of competition and marketing come in. Therefore we have to
concentrate on the village being self-contained, manufacturing mainly for use. Provided
this character of the village industry is maintained, there would be no objection to villagers
using even the modern machines that they can make and can afford to use. Only they
should not be used as a means of exploitation by others.”

“You cannot build nonviolence on a factory civilization, but it can be built on self-
contained villages... Rural economy as I have conceived it, eschews exploitation altogether,
and exploitation is the essence of violence... We have to make a choice between India of
the villages that are as ancient as herself and India of the cities which are a creation of
foreign domination...”

“Machinery has its place; it has come to stay. But it must not be allowed to displace
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Figure 6.17: Gandhi’s spinning wheel was incorporated into the flag of the
Congress Party and later into the national flag of an independent India.

necessary human labour. An improved plow is a good thing. But if by some chances, one
man could plow up, by some mechanical invention of his, the whole of the land of India,
and control all the agricultural produce, and if the millions had no other occupation, they
would starve, and being idle, they would become dunces, as many have already become.
There is hourly danger of many being reduced to that unenviable state.”

In these passages we see Gandhi not merely as a pioneer of nonviolence; we see him also
as an economist. Faced with misery and unemployment produced by machines, Gandhi
tells us that social goals must take precedence over blind market mechanisms. If machines
are causing unemployment, we can, if we wish, and use labor-intensive methods instead.
With Gandhi, the free market is not sacred - we can do as we wish, and maximize human
happiness, rather than maximizing production and profits.

Gandhi also organized many demonstrations whose purpose was to show the British
public that although the British raj gave India many benefits, the toll exacted was too high,
not only in terms of money, but also in terms of India’s self-respect and self-sufficiency.
All of Gandhi’s demonstrations were designed to underline this fact. For example, in 1930
Gandhi organized a civil-disobedience campaign against the salt laws. The salt laws gave
the Imperial government a monopoly and prevented Indians from making their own salt by
evaporating sea water. The majority of Indians were poor farmers who worked long hours
in extreme heat, and salt was as much a necessity to them as bread. The tax on salt was
essentially a tax on the sweat of the farmers.

Before launching his campaign, Gandhi sent a polite letter to the Viceroy, Lord Irwin,
explaining his reasons for believing that the salt laws were unjust, and announcing his
intention of disregarding them unless they were repealed. Then, on March 12 1930, Gandhi
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and many of his followers, accompanied by several press correspondents, started on a march
to the sea to carry out their intention of turning themselves into criminals by making salt.
Every day, Gandhi led the procession about 12 miles, stopping at villages in the evenings
to hold prayer meetings. Many of the villagers joined the march, while others cast flower
petals in Gandhi’s path or sprinkled water on his path to settle the dust.

On April 5 the marchers arrived at the sea, where they spent the night in prayer on the
beach. In the morning they began to make salt by wading into the sea, filling pans with wa-
ter, and letting it evaporate in the sun. Not much salt was made in this way, but Gandhi’s
action had a strong symbolic power. A wave of non-violent civil disobedience demon-
strations swept over India, so extensive and widespread that the Imperial government, in
danger of losing control of the country, decided to arrest as many of the demonstrators as
possible. By midsummer, Gandhi and a hundred thousand of his followers were in prison,
but nevertheless the civil disobedience demonstrations continued.

In January, 1931, Gandhi was released from prison and invited to the Viceroy’s palace
to talk with Lord Irwin. They reached a compromise agreement: Gandhi was to call off the
demonstrations and would attend a Round Table Conference in London to discuss Indian
home rule, while Lord Irwin agreed to release the prisoners and would change the salt laws
so that Indians living near to the coast could make their own salt.

The salt march was typical of Gandhi’s non-violent methods. Throughout the demon-
strations he tried to maintain a friendly attitude towards his opponents, avoiding escalation
of the conflict. Thus at the end of the demonstrations, the atmosphere was one in which a
fair compromise solution could be reached. Whenever he was in prison, Gandhi regarded
his jailers as his hosts. Once, when he was imprisoned in South Africa, he used the time
to make a pair of sandals, which he sent to General Smuts, the leader of the South African
government. Thus Gandhi put into practice the Christian principle, “Love your enemies;
do good to them that hate you.”

Gandhi’s importance lies in the fact that he was a major political leader who sincerely
tried to put into practice the ethical principles of religion. In his autobiography Gandhi
says: “I can say without the slightest hesitation, and yet with all humility, that those who
say that religion has nothing to do with politics do not know what religion means.”

Gandhi believed that human nature is essentially good, and that it is our task to find
and encourage whatever is good in the character of others. During the period when he
practiced as a lawyer, Gandhi’s aim was “to unite parties riven asunder,” and this was also
his aim as a politician. In order for reconciliation to be possible in politics, it is necessary
to avoid escalation of conflicts. Therefore Gandhi used non-violent methods, relying only
on the force of truth. “It is my firm conviction,” he wrote, “that nothing can be built on
violence.”

To the insidious argument that “the end justifies the means,” Gandhi answered firmly:
“They say ‘means are after all means’. I would say ‘means are after all everything’. As
the means, so the end. Indeed the Creator has given us control (and that very limited)
over means, none over end. ... The means may be likened to a seed, and the end to a tree;
and there is the same inviolable connection between the means and the end as there is
between the seed and the tree. Means and end are convertible terms in my philosophy of
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life.” In other words, a dirty method produces a dirty result; killing produces more killing;
hate leads to more hate. But there are positive feedback loops as well as negative ones.
A kind act produces a kind response; a generous gesture is returned; hospitality results in
reflected hospitality. Hindus and Buddhists call this principle “the law of karma”.

Gandhi believed that the use of violent means must inevitably contaminate the end
achieved. Because Gandhi’s methods were based on love, understanding, forgiveness and
reconciliation, the non-violent revolution which he led left very little enmity in its wake.
When India finally achieved its independence from England, the two countries parted
company without excessive bitterness. India retained many of the good ideas which the
English had brought - for example the tradition of parliamentary democracy - and the two
countries continued to have close cultural and economic ties.

Mahatma Gandhi was assassinated by a Hindu extremist on January 30, 1948. After
his death, someone collected and photographed all his worldly goods. These consisted
of a pair of glasses, a pair of sandals and a white homespun loincloth. Here, as in the
Swadeshi movement, we see Gandhi as a pioneer of economics. He deliberately reduced his
possessions to an absolute minimum in order to demonstrate that there is no connection
between personal merit and material goods. Like Veblen, Mahatma Gandhi told us that
we must stop using material goods as a means of social competition. We must start to
judge people not by what they have, but by what they are.

6.17 Thoreau

In the distant future (and perhaps even in the not-so-distant future) industrial civilization
will need to abandon its relentless pursuit of unnecessary material goods and economic
growth. Modern society will need to re-establish a balanced and harmonious relationship
with nature. In pre-industrial societies harmony with nature is usually a part of the cultural
tradition. In our own time, the same principle has become central to the ecological counter-
culture while the main-stream culture thunders blindly ahead, addicted to wealth, power
and growth.

In the 19th century the American writer, Henry David Thoreau (1817-1862), pioneered
the concept of a simple life, in harmony with nature. Today, his classic book, Walden, has
become a symbol for the principles of ecology, simplicity, and respect for nature.

Thoreau was born in Concord Massachusetts, and he attended Harvard from 1833 to
1837. After graduation, he returned home, worked in his family’s pencil factory, did odd
jobs, and for three years taught in a progressive school founded by himself and his older
brother, John. When John died of lockjaw in 1842, Henry David was so saddened that he
felt unable to continue the school alone.

Thoreau refused to pay his poll tax because of his opposition to the Mexican War and
to the institution of slavery. Because of his refusal to pay the tax (which was in fact a
very small amount) he spent a night in prison. To Thoreau’s irritation, his family paid the
poll tax for him and he was released. He then wrote down his ideas on the subject in an
essay entitled The Duty of Civil Disobedience, where he maintains that each person has a
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duty to follow his own individual conscience even when it conflicts with the orders of his
government. “Under a government that which imprisons any unjustly”, Thoreau wrote,
“the true place for a just man is in prison.” Ciwvil Disobedience influenced Tolstoy, Gandhi
and Martin Luther King, and it anticipated the Niiremberg Principles.

Thoreau became the friend and companion of the transcendentalist writer Ralph Waldo
Emerson (1803-1882), who introduced him to a circle of writers and thinkers that included
Ellery Channing, Margaret Fuller and Nathanial Hawthorne.

Nathanial Hawthorne described Thoreau in the following words: “Mr. Thorow [sic| is
a keen and delicate observer of nature - a genuine observer, which, I suspect, is almost
as rare a character as even an original poet; and Nature, in return for his love, seems to
adopt him as her especial child, and shows him secrets which few others are allowed to
witness. He is familiar with beast, fish, fowl, and reptile, and has strange stories to tell of
adventures, and friendly passages with these lower brethren of mortality. Herb and flower,
likewise, wherever they grow, whether in garden, or wild wood, are his familiar friends.
He is also on intimate terms with the clouds and can tell the portents of storms. It is a
characteristic trait, that he has a great regard for the memory of the Indian tribes, whose
wild life would have suited him so well; and strange to say, he seldom walks over a plowed
field without picking up an arrow-point, a spear-head, or other relic of the red men - as if
their spirits willed him to be the inheritor of their simple wealth.”

At Emerson’s suggestion, Thoreau opened a journal, in which he recorded his obser-
vations concerning nature and his other thoughts. Ultimately the journal contained more
than 2 million words. Thoreau drew on his journal when writing his books and essays, and
in recent years, many previously unpublished parts of his journal have been printed.

From 1845 until 1847, Thoreau lived in a tiny cabin that he built with his own hands.
The cabin was in a second-growth forest beside Walden Pond in Concord, on land that
belonged to Emerson. Thoreau regarded his life there as an experiment in simple living.
He described his life in the forest and his reasons for being there in his book Walden, which
was published in 1854. The book is arranged according to seasons, so that the two-year
sojourn appears compressed into a single year.

“Most of the luxuries”, Thoreau wrote, “and many of the so-called comforts of life,
are not only not indispensable, but positive hindrances to the elevation of mankind. With
respect to luxuries, the wisest have ever lived a more simple and meager life than the poor.
The ancient philosophers, Chinese, Hindoo, Persian, and Greek, were a class than which
none has been poorer in outward riches, none so rich in inward.”

Elsewhere in Walden, Thoreau remarks, “It is never too late to give up your prejudices”,
and he also says, “Why should we be in such desperate haste to succeed, and in such
desperate enterprises? If a man does not keep pace with his companions, perhaps it is
because he hears a different drummer.” Other favorite quotations from Thoreau include
“Rather than love, than money, than fame, give me truth”, “Beware of all enterprises that
require new clothes”, “Most men lead lives of quiet desperation” and “Men have become
tools of their tools.”

Towards the end of his life, when he was very ill, someone asked Thoreau whether he
had made his peace with God. “We never quarreled”, he answered.
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Figure 6.18: Henry David Thoreau, 1817-1862.
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Thoreau’s closeness to nature can be seen from the following passage, written by his
friend Frederick Willis, who visited him at Walden Pond in 1847, together with the Alcott
family: “He was talking to Mr. Alcott of the wild flowers in Walden woods when, suddenly
stopping, he said: ‘Keep very still and I will show you my family.” Stepping quickly outside
the cabin door, he gave a low and curious whistle; immediately a woodchuck came running
towards him from a nearby burrow. With varying note, yet still low and strange, a pair
of gray squirrels were summoned and approached him fearlessly. With still another note
several birds, including two crows flew towards him, one of the crows nestling upon his
shoulder. I remember that it was the crow resting close to his head that made the most
vivid impression on me, knowing how fearful of man this bird is. He fed them all from his
hand, taking food from his pocket, and petted them gently before our delighted gaze; and
then dismissed them by different whistling, always strange and low and short, each wild
thing departing instantly at hearing his special signal.”

In an essay published by the Atlantic Monthly in 1853, Thoreau described a pine tree in
Maine with the words: “It is as immortal as I am, and perchance will go to as high a heaven,
there to tower above me still.” However, the editor (James Russell Lowell) considered the
sentence to be blasphemous, and removed it from Thoreau’s essay before publication.

In one of his essays, Thoreau wrote: “If a man walk in the woods for love of them half
of each day, he is in danger of being regarded as a loafer; but if he spends his whole day
as a speculator, shearing off those woods and making the earth bald before her time, he is
esteemed an industrious and enterprising citizen.”

6.18 The counter-culture

Say’s Law asserts that “Supply creates its own demand”. Jean-Baptiste Say’s basis for
this proposition was the assumption that a consumer’s desire for goods is infinite. He
combined this assumption with the observation that the wages paid for the production
of goods will provide money enough to buy back the goods, even if the amount involved
increases without limit. Comforted by Say’s “law”, and by the observation that people
in industrial societies do indeed consume far more than they actually need, economists
continue to pursue economic growth as though it were the Holy Grail. We do indeed
devote much of our efforts to “making the earth bald before her time”.

As things are today, the advertising industry, which is part of the mainstream culture,
whips demand towards ever higher levels by exploiting our tendency to use material goods
for the purpose of social competition. Meanwhile, a small but significant counter-culture
has realized that unlimited economic growth will lead to ecological disaster unless we stop
in time.

In the 1960’s, a counter-culture developed in the United States, partly as a reaction
against the Vietnam War and partly as a reaction against consumerism. It seemed to
young people that they were being offered a possession-centered way of life that they did
not want, and that they were being asked to participate in a war that they thought was
immoral.
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In 1964, a free speech movement began on the campus of the University of California
in Berkeley. Students demanded that the university administration should lift a ban that
it had imposed on on-campus political activities. Student movements elsewhere in the
United States and in Europe echoed the Berkeley protests throughout the late 1960’s and
early 1970’s.

Mario Savo, one of the leaders of the Berkeley free speech movement, compared the
Establishment to an enormous anti-human machine: “There is a time when the operation
of the machine becomes so odious, makes you so sick at heart, that you can’t take part;
you can’t even passively take part, and you’ve got to put your bodies upon the gears and
upon the wheels, upon the levers, upon all the apparatus, and you've got to make it stop.
And you've got to indicate to the people who run it, to the people who own it, that unless
you're free, the machine will be prevented from working at all.”

The Greening of America, by Charles Reich, describes the youth-centered counter-
culture: “Industrialism produced a new man...”, Reich wrote, “one adapted to the demands
of the machine. In contrast, today’s emerging consciousness seeks a new knowledge of what
it means to be human, in order that the machine, having been built, may now be turned
to human ends; in order that man once more can become a creative force, renewing and
creating his own life and thus giving life back to society.”

6.19 The Brundtland Report

In 1972, the United Nations Conference on the Human Environment took place in Stock-
holm. In a 1983 follow-up to the Stockholm conference, the General Assembly of the UN
adopted a resolution (A/38/161) establishing the World Commission on Environment and
Development. It is usually known as the Brundtland Commission after the name of its
Chair, Dr. Gro Harlem Brundtland, who was at the time the Prime Minister of Norway.
The report of the Brundtland Commission, entitled Our Common Future, was submitted
to the United Nations in 1987.

In the words of Dr. Brundtland, the goal of the report was “to help define shared
perceptions of long-term environmental issues and the appropriate efforts needed to deal
successfully with the problems of protecting and enhancing the environment, a long-term
agenda for action during the coming decades...”

One of the key concepts of the Brundtland Report was ”sustainable development”.
The Report offered the following definition: “Sustainable development is development that
meets the needs of the present without compromising the ability of future generations to
meet their own needs.”

The Brundtland Commission’s key concepts for sustainability were as follows:

1. Today’s needs should not compromise the ability of future generations to meet their
needs.

2. A direct link exists between the economy and the environment.
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Figure 6.19: Gro Harlem Brundtland

3. The needs of the poor in all nations must be met.

4. In order for the environment to be protected, the economic conditions of the world’s
poor must be improved.

5. In all our actions, we must consider the impact upon future generations.

The Brundtland Commission’s report examines the question of whether the earth can
support a population of 10 billion people without the collapse of the ecological systems
on which all life depends. The report states that the data “suggest that meeting the
food requirements of an ultimate world population of around 10 billion would require some
changes in food habits, as well as greatly improving the efficiency of traditional agriculture.”

6.20 The Earth Summit at Rio

The Brundtland Report served as a preparation for the United Nations Conference on
Environment and Development, which took place from the 3rd to the 14th of June, 1992 in
Rio de Janeiro. The conference, informally called the “Earth Summit”, was unprecedented
in its size and significance. 172 governments participated, including 108 heads of state or
government. 17,000 people attended the Earth Summit, including 2,400 representatives of
NGO’s. An estimated 10,000 journalists covered the conference.

The Earth Summit at Rio ought to have been a turning point in the relationship
between humans and the global environment. However, despite the size and importance of
the conference, and despite the hopes of most of the participants, the the Earth Summit
did not result in the changes in laws and lifestyles that will be needed to establish long-term
sustainability.
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Two basic problems are leading to the destruction of the global environment - excessive
population growth in the developing South, and excessive economic growth and overcon-
sumption in the industrial North. Political and religious pressures prevented overpopu-
lation from being named at Rio as one of the root causes of environmental degradation.
Political pressures also prevented the necessary changes in laws and lifestyles from being
made in the North.

Nevertheless, considerable progress was made at Rio. The resulting documents in-
cluded Agenda 21 (an environmental agenda for the 21st century), the Rio Declaration on
Environment and Development, the Statement on Forest Principles, the United Nations
Framework Convention on Climate Change and the United Nations Convention on Biolog-

ical Diversity. Later the Earth Charter was developed by some of the leaders who met in
Rio.

Agenda 21
The first few chapters of Agenda 21 are as follows:
1. Preamble

2. International cooperation to accelerate sustainable development in developing coun-
tries and related domestic policies

3. Combating poverty

4. Changing consumption patterns

5. Demographic dynamics and sustainability

6. Protecting and promoting human health conditions

7. Promoting sustainable human settlement development

8. Integrating environment and development in decision-making

9. Protecting the atmosphere
10. Integrated approach to the planning and management of land resources
11. Combating deforestation
12. Managing fragile ecosystems; sustainable mountain development
13. Conservation of biological diversity
14. Environmentally sound management of biotechnology

15. Protection of the oceans



260 A HISTORY OF THE EARTH

The good intentions of the authors shine from this list! It was a major victory to
have Agenda 21 adopted as the official policy of the United Nations. Close examination
reveals many political compromises in the wording the conclusions, but the idealism of the
document is not entirely lost.

Agenda 21, touches (very lightly!) on the root causes of environmental degradation.
In Section 4.6, one finds the extremely weak statement: “Some economists are question-
ing traditional concepts of economic growth and underlining the importance of pursuing
economic objectives that take into account of the full value of natural resource capital.
More needs to be known about the role of consumption in relation to economic growth and
population dynamics in order to formulate coherent international and national policies.”
However, in Section 5.3, a clearer statement of the basic problem appears: “The growth
of world population and production, combined with unsustainable consumption patterns,
places increasingly severe stress on the life-supporting systems of our planet.”

6.21 The transition from growth to a steady state -
minimizing the trauma

According to Adam Smith, the free market is the dynamo of economic growth. The true
entrepreneur does not indulge in luxuries for himself and his family, but reinvests his profits,
with the result that his business or factory grows larger, producing still more profits, which
he again reinvests, and so on. This is indeed the formula for exponential economic growth.

Economists (with a few notable exceptions) have long behaved as though growth were
synonymous with economic health. If the gross national product of a country increases
steadily by 4% per year, most economists express approval and say that the economy is
healthy. If the economy could be made to grow still faster (they maintain), it would be
still more healthy. If the growth rate should fall, economic illness would be diagnosed.
However, the basic idea of Malthus is applicable to exponential increase of any kind. It
is obvious that on a finite Earth, neither population growth nor economic growth can
continue indefinitely.

A “healthy” economic growth rate of 4% per year corresponds to an increase by a factor
of 50 in a century, by a factor of 2500 in two centuries, and by a factor of 125,000 in three
centuries. No one can maintain that this type of growth is sustainable except by refusing
to look more than a short distance into the future.

But why do most economists cling so stubbornly and blindly to the concept of growth?
Why do they refuse to look more than a few years into the future? We can perhaps
understand this strange self-imposed myopia by remembering some of David Ricardo’s
ideas: One of his most important contributions to economic theory was his analysis of
rents. Ricardo considered the effects of economic expansion; and he concluded that as
population increased, marginally fertile land would be forced into cultivation. The price
of grain would be determined by the cost of growing it on inferior land; and the owners of
better land would be able to pocket a progressively larger profit as worse and worse land
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was forced into use by the demands of a growing population. Ricardo’s analysis of rents for
agricultural land has various generalizations; for example, a growing population also puts
pressure on land used for building cities, and profits can be gained by holding such land,
or through the ownership of houses in growing cities. In general, in a growing economy,
investments are likely to be rewarded. In a stationary or contracting economy, the stock
market may crash.

Considerations like those just discussed make it easy to understand why economists are
biased in favor of growth. However, we are now entering a period where biological and
physical constraints will soon put an end to economic growth.

Instead of burning our tropical forests, it might be wise for us to burn our books on
growth-oriented economics! An entirely new form of economics is needed today - not the
empty-world economics of Adam Smith, but what might be called “full-world economics”,
or “steady-state economics”.

The present use of resources by the industrialized countries is extremely wasteful. A
growing national economy must, at some point, exceed the real needs of the citizens. It has
been the habit of the developed countries to create artificial needs by means of advertising,
in order to allow economies to grow beyond the point where all real needs have been met;
but this extra growth is wasteful, and in the future it will be important not to waste the
earth’s diminishing supply of non-renewable resources.

Thus, the times in which we live present a challenge: We need a revolution in economic
thought. We must develop a new form of economics, taking into account the realities of
the world’s present situation - an economics based on real needs and on a sustainable
equilibrium with the environment, not on the thoughtless assumption that growth can
continue forever.

Adam Smith was perfectly correct in saying that the free market is the dynamo of
economic growth; but exponential growth of human population and economic activity
have brought us, in a surprisingly short time, from the empty-world situation in which
he lived to a full-world situation. In today’s world, we are pressing against the absolute
limits of the earth’s carrying capacity, and further growth carries with it the danger of
future collapse. Full-world economics, the economics of the future, will no longer be able
to rely on growth to give profits to stockbrokers or to solve problems of unemployment or
to alleviate poverty. In the long run, growth of any kind is not sustainable; and we are
now nearing its sustainable limits.

Like a speeding bus headed for a brick wall, the earth’s rapidly-growing population of
humans and its rapidly-growing economic activity are headed for a collision with a very
solid barrier - the carrying capacity of the global environment. As in the case of the bus
and the wall, the correct response to the situation is to apply the brakes in time - but fear
prevents us from doing this. What will happen if we slow down very suddenly? Will not
many of the passengers be injured? Undoubtedly. But what will happen if we hit the wall
at full speed? Perhaps it would be wise, after all, to apply the brakes!

The memory of the great depression of 1929 makes us fear the consequences of an
economic slowdown, especially since unemployment is already a serious problem in many
parts of the world. Although the history of the 1929 depression is frightening, it may
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nevertheless be useful to look at the measures which were used then to bring the global
economy back to its feet. A similar level of governmental responsibility may help us to
avoid some of the more painful consequences of the necessary transition from the economics
of growth to steady-state economics.

In the United States, President Franklin D. Roosevelt was faced with the difficult prob-
lems of the depression during his first few years in office. Roosevelt introduced a number of
special governmental programs, such as the WPA | the Civilian Construction Corps and the
Tennessee Valley Authority, which were designed to create new jobs on projects directed
towards socially useful goals - building highways, airfields, auditoriums, harbors, housing
projects, schools and dams. The English economist John Maynard Keynes, (1883-1946),
provided an analysis of the factors that had caused the 1929 depression, and a theoretical
justification of Roosevelt’s policies.

The transition to a sustainable global society will require a similar level of governmental
responsibility, although the measures needed are not the same as those which Roosevelt
used to end the great depression. Despite the burst of faith in the free market which has
followed the end of the Cold War, it seems unlikely that market mechanisms alone will
be sufficient to solve problems of unemployment in the long-range future, or to achieve
conservation of land, natural resources and environment.
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Figure 6.20: Franklin D. Roosevelt (1882-1945) with his dog Fala and Ruthie Bie
at Hilltop in 1941. Roosevelt served as President of the United States from
1933 to 1945, and was starting his 4th term when he died. Although crippled
by polio, he managed to convey an image of dynamism and confidence.
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6.22 Keynesian economics

In December, 1933, Keynes wrote to Franklin D. Roosevelt: “Dear Mr. President, You
have made yourself the Trustee for those in every country who seek to mend the evils of our
condition by reasoned experiment within the framework of the existing social system. If
you fail, rational change will be gravely prejudiced throughout the world, leaving orthodoxy
and revolution to fight it out. But if you succeed, new and bolder methods will be tried
everywhere, and we may date the first chapter of a new economic era from your accession
to office...”

“...Thus as the prime mover in the first stage of the technique of recovery I lay over-
whelming emphasis on the increase of national purchasing power resulting from governmen-
tal expenditure which is financed by Loans and not by taxing present incomes. Nothing
else counts in comparison with this. In a boom inflation can be caused by allowing un-
limited credit to support the excited enthusiasm of business speculators. But in a slump
governmental Loan expenditure is the only sure means of securing quickly a rising output
at rising prices. That is why war has always caused intense industrial activity. In the past
orthodox finance has regarded war as the only legitimate excuse for creating employment
by governmental expenditure. You, Mr. President, having cast off such fetters, are free to
engage in the interests of peace and prosperity the technique which hitherto has only been
allowed to serve the purposes of war and destruction.”

John Maynard Keynes (1883-1946), the author of this letter to Roosevelt, was the son of
the Cambridge University economist and logician, Neville Keynes. After graduating from
Eton and studying economics at King’s College, Cambridge, Keynes spent a few years as
a civil servant in the India Office. In 1909, he returned to Cambridge as a Fellow of King’s
College. He became a member of the “Bloomsbury Group”, a collection of intellectual
friends that included Virginia and Leonard Woolf, E.M. Forster, Clive and Vanessa Bell,
Duncan Grant, Lytton Strachy, Roger Fry, and Bertrand Russell. In 1911, Keynes became
the editor of the Economic Journal, a position that he retained almost until the end of his
life.

In 1918, Keynes married the Russian ballerina Lydia Lopokova. They met at a party
given by the Sitwells. Lydia was struggling to learn English, and one of her more interesting
remarks was, “I dislike being in the country in August because my legs get so bitten
by barristers”. To everyone’s surprise, Lydia proved to be the perfect wife for Keynes,
encouraging his wide range of cultural interests. He and Lydia did much to develop the
Cambridge Arts Theatre. Lydia maintained her interest in the ballet, although she no
longer danced professionally. Visitors to the couple’s house occasionally heard formidable
thumpings from an upper room, and they realized that Lydia was practicing.

During World War I, Keynes worked in the British Treasury, helping to find ways to
finance the war. In 1919, he was sent to the peace conference at Versailles as a representa-
tive of the Treasury. Keynes recognized the disastrous economic consequences that would
follow from the Treaty of Versailles, and returning to Cambridge, he wrote The Economic
Consequences of the Peace (1919). “It is an extraordinary fact”, Keynes wrote, “that the
fundamental problems of a Europe starving and disintegrating before their eyes, was the
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Figure 6.21: John Maynard Keynes (right) with Harry Dexter White at the
Bretton Woods Conference. Keynes was an extremely tall man - 6 feet and 6
inches tall, i.e. 198 cm. Heart problems caused his early death.
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Figure 6.22: Migrant Mother, a photograph by Dorthea Lange, shows a destitute
pea picker in California in 1936, during the Great Depression.

one question in which it was impossible to arouse the interest of the [Council of] Four.”

The book became a best seller and was very influential in shaping public opinion, both
in England and in the United States. In his book, Keynes predicted that the reparations
imposed against Germany at Versailles would cause economic ruin. He advocated instead
a loan system to rebuild postwar Europe. The plan advocated by Keynes was similar to
the Marshall Plan that followed World War II. Had it been put into effect in 1919, it might
have prevented the Second World War.

In 1936, Keynes published his magnum opus, General Theory of Employment, Interest
and Money. In this book, he provided a theoretical explanation for the fact that the great
depression showed no tendency to right itself, as well as arguments for governmental inter-
ventions to counter business cycles and to produce full employment. Once again, Keynes
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had written a best-seller. His General Theory proved to be one of the most influential
books on economics ever written.

Keynes rebelled against the ideas of the classical economists, who believed that if let
entirely alone, the world economy would correct itself. The classical economists recom-
mended that, to end the depression, labor unions should be made illegal, minimum wages
and long-term wage contracts abolished, and government spending curtailed (to restore
business confidence). Then, they maintained, wages would fall, businessmen would hire
more workers, and full employment and production would be restored. One reason for
the popularity of the General Theory was that everyone knew the recommendations of the
classical economists were bad policies. Now Keynes showed why these bad policies were
also bad economics.

Keynes pointed out that a fall in wages would produce a fall in purchasing power, and
hence a fall in aggregate demand. Producers would then be less able to sell their products.
Thus Keynes believed that falling wages would deepen the depression, rather than ending
it.

Part of Keynes’ skepticism towards classical economics had to do with his criticisms of
the short-term version of Say’s Law, on which classical economics was based. Jean-Baptiste
Say (1767-1832) believed a general glut to be impossible, since wages for the production of
goods could be used by society to buy back its aggregate production. “A glut”, Say wrote,
“can take place only when there are too many means of production applied to one kind of
product, and not enough to another.”

Say considered the influence of the money supply on this process to be negligible, and he
believed that the problem could be analyzed from the standpoint of barter. Say believed
that no one would keep money for long. Having obtained money in a transaction, he
believed, people would immediately spend it again. Thus Say did not worry about the
problem of excessive saving that bothered both Malthus and Hobson.

“It is not the abundance of money”, Say wrote, “but the abundance of other products
in general that facilitates sales... Money performs no more than the role of a conduit in
this double exchange. When the exchanges have been completed, it will be found that one
has paid for products with products.”

“It is worthwhile to remark”, Say continued, “that a product is no sooner created than
it, from that instant, affords a market for other products to the full extent of its value.
When the producer has put the finishing hand to his product, he is most anxious to sell it
immediately, lest its value should diminish in his hands. Nor is he less anxious to dispose
of the money he may get for it; for the value of money is also perishable. But the only way
to get rid of money is in the purchase some product or other. Thus the mere circumstance
of creation of one product immediately opens a vent for other products.”

Keynes disagreed with these conclusions in several respects. First of all, he did not
believe, like Say, that the money supply played a negligible role in determining economic
activity. Secondly he did not agree that the producer who has received money for his
goods is necessarily “anxious to dispose of the money”. As a recession deepens, the value
of money in terms of goods increases, and therefore it is rational to keep money, hoping
to get more goods for it at a later time. Whether it is more rational to keep money or to
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spend it immediately depends on the phase of the business cycle, Keynes pointed out.

In James Mill’s version, Say’s Law states that “supply creates its own demand”. Keynes
reversed this, and maintained in a depression, the fault may be on the demand side,
i.e., “demand creates supply”, rather than the reverse. It is true that during the great
depression, many people were in need; but need does not constitute demand in the economic
sense unless it is combined with purchasing power.

Keynes (like Malthus and Hobson) believed that excessive saving could be a serious
problem, capable of causing a “general glut” or depression. By excessive saving, he meant
saving beyond planned investment, a condition that could be caused by falling consumer
demand, overinvestment in previous years, or lack of business confidence. The classi-
cal economists believed that excessive saving would be corrected by falling interest rates.
Keynes did not believe that interest rates would respond quickly enough to perform this cor-
rective function. Instead, Keynes believed, excessive savings would be in the end corrected
by the fall in aggregate income which characterizes a recession or depression. The econ-
omy would reach a new equilibrium at low levels of employment, income, investment and
production. This new, undesirable equilibrium would not be self-correcting. (By calling
his theory a General Theory, Keynes meant that he treated not only the full-employment
equilibrium, but also other types of equilibria.)

Keynes believed that active government fiscal and monetary policy could be effective
in combating cycles of inflation and depression. Fiscal policy is defined as policy regarding
government expenditure, while monetary policy means governmental policy with respect
to the money supply. Keynes advocated a counter-cyclical use of these two tools, i.e. he
believed that government spending and expansionist monetary policy should be used to
combat recessions and depressions, while the opposite policies should be used to cool an
economy whenever it became overheated.

Keynes visited Roosevelt in Washington in 1934. Roosevelt liked him, but found his
theories overly mathematical. Nevertheless Keynes ideas influenced Roosevelt’s policies,
especially in 1937, when a new dip in the economy occurred. Over the years, Keynes’ advo-
cacy of counter-cyclical governmental intervention has become widely accepted, especially
by social-democratic governments in Europe.

The New Deal measures inaugurated by Roosevelt were only partially effective in pro-
ducing full employment. The reason that they were only partially successful was that
although they were designed to help business get restarted, they were viewed with hostility
by the business community. This hostility prevented Roosevelt from using fiscal policy on
a large enough scale to produce full employment. Also, because businessmen felt uneasy
with the new political climate, business investment remained sluggish.

One of the conclusions of Keynes’ General Theory was that investment by expanding
businesses is essential to keep an economy from contracting. This conclusion is worrying,
because in the future, exponential expansion of business activity will gradually become less
and less possible. Thus we can visualize a future need for governmental intervention to
prevent a depression.

During World War I1, Keynes advice on how to finance the war effort was sought by the
British government. He did as much as he could, but his activity was limited by increasing
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heart problems. At the end of the war, Keynes represented England at the Breton Woods
Conference, which established the World Bank and the International Monetary Fund. He
received many honors - for example, he became Lord Keynes. However, his health remained
unstable, and in 1946 he died of a heart attack. His life and work had produced a permanent
change from the laissez faire economics of Adam Smith to an era of recognized governmental
responsibility.

6.23 The transition to a sustainable economy

The Worldwatch Institute, Washington D.C., lists the following steps as necessary for the
transition to sustainability{’}

1. Stabilizing population

2. Shifting to renewable energy
3. Increasing energy efficiency
4. Recycling resources

5. Reforestation

6. Soil Conservation

All of these steps are labor-intensive; and thus, wholehearted governmental commitment
to the transition to sustainability can help to solve the problem of unemployment.

In much the same spirit that Roosevelt (with Keynes’ approval) used governmental
powers to end the great depression, we must now urge our governments to use their powers
to promote sustainability and to reduce the trauma of the transition to a steady-state
economy. For example, an increase in the taxes on fossil fuels could make a number of
renewable energy technologies economically competitive; and higher taxes on motor fuels
would be especially useful in promoting the necessary transition from private automobiles
to bicycles and public transportation. Tax changes could also be helpful in motivating
smaller families.

Governments already recognize their responsibility for education. In the future, they
must also recognize their responsibility for helping young people to make a smooth transi-
tion from education to secure jobs. If jobs are scarce, work must be shared, in a spirit of
solidarity, among those seeking employment; hours of work (and if necessary, living stan-
dards) must be reduced to insure a fair distribution of jobs. Market forces alone cannot
achieve this. The powers of government are needed.

Economic activity is usually divided into two categories, 1) production of goods and
2) provision of services. It is the rate of production of goods that will be limited by the
carrying capacity of the global environment. Services that have no environmental impact

4L.R. Brown and P. Shaw, 1982.
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Figure 6.23: A reforestation project in Burkina Faso. Projects such as this may
help the world to achieve sustainability, while simultaneously helping to solve
problems of unemployment.

will not be constrained in this way. Thus a smooth transition to a sustainable economy
will involve a shift of a large fraction the work force from the production of goods to the
provision of services.

In his recent popular book The Rise of the Creative Class, the economist Richard
Florida points out that in a number of prosperous cities - for example Stockholm - a large
fraction of the population is already engaged in what might be called creative work - a type
of work that uses few resources, and produces few waste products - work which develops
knowledge and culture rather than producing material goods. For example, producing
computer software requires few resources and results in few waste products. Thus it is
an activity with a very small ecological footprint. Similarly, education, research, music,
literature and art are all activities that do not weigh heavily on the carrying capacity
of the global environment. Florida sees this as a pattern for the future, and maintains
that everyone is capable of creativity. He visualizes the transition to a sustainable future
economy as one in which a large fraction of the work force moves from industrial jobs
to information-related work. Meanwhile, as Florida acknowledges, industrial workers feel
uneasy and threatened by such trends.
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6.24 Population and goods per capita

In the distant future, the finite carrying capacity of the global environment will impose
limits on the amount of resource-using and waste-generating economic activity that it will
be possible for the world to sustain. The consumption of goods per capita will be equal
to this limited total economic activity divided by the number of people alive at that time.
Thus, our descendants will have to choose whether they want to be very numerous and
very poor, or less numerous and more comfortable, or very few and very rich. Perhaps the
middle way will prove to be the best.

Given the fact that environmental carrying capacity will limit the sustainable level of
resource-using economic activity to a fixed amount, average wealth in the distant future will
be approximately inversely proportional to population over a certain range of population
values ]

Suggestions for further reading

1. W. Bowden, Industrial Society in England Towards the End of the Eighteenth Cen-
tury, MacMillan, New York, (1925).

2. G.D. Cole, A Short History of the British Working Class Movement, MacMillan, New

York, (1927).

P. Deane, The First Industrial Revolution, Cambridge University Press, (1969).

4. Marie Boaz, Robert Boyle and Seventeenth Century Chemistry, Cambridge University
Press (1958).

5. J.G. Crowther, Scientists of the Industrial Revolution, The Cresset Press, London
(1962).

6. R.E. Schofield, The Lunar Society of Birmingham, Oxford University Press (1963).

7. L.T.C. Rolt, Isambard Kingdom Brunel, Arrow Books, London (1961).

8. J.D. Bernal, Science in History, Penguin Books Ltd. (1969).

9

0

1

©

. Bertrand Russell, The Impact of Science on Society, Unwin Books, London (1952).

. Wilbert E. Moore, The Impact of Industry, Prentice Hall (1965).

. Charles Morazé, The Nineteenth Century, George Allen and Unwin Ltd., London

(1976).

12. Carlo M. Cipolla (editor), The Fontana Economic History of Europe, Fontana/Collins,
Glasgow (1977).

13. Martin Gerhard Geisbrecht, The Evolution of Economic Society, W.H. Freeman and
Co. (1972).

14. P.N. Stearns, The Industrial Revolution in World History, Westvieiw Press, (1998).

15. E.P. Thompson, The Making of the English Working Class, Pennguin Books, London,
(1980).

>Obviously, if the number of people is reduced to such an extent that it approaches zero, the average
wealth will not approach infinity, since a certain level of population is needed to maintain a modern
economy. However, if the global population becomes extremely large, the average wealth will indeed
approach zero.



272

16.

17.

18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

32.
33.

34.

35.

36.
37.
38.
39.

40

A HISTORY OF THE EARTH

N.J. Smelser, Social Change and the Industrial Revolution: An Application of Theory
to the British Cotton Industry, University of Chicago Press, (1959).

D.S. Landes, The Unbound Prometheus: Technical Change and Industrial Develop-
ment in Western Europe from 1750 to the Present, 2nd ed., Cambridge University
Press, (2003).

S. Pollard, Peaceful Conquest: The Industrialization of Europe, 1760-1970, Oxford
University Press, (1981).

M. Kranzberg and C.W. Pursell, Jr., eds., Technology in Western Civilization, Oxford
University Press, (1981).

M.J. Daunton, Progress and Poverty: An Economic and Social History of Britain,
1700-1850, Oxford University Press, (1990).

L.R. Berlanstein, The Industrial Revolution and Work in 19th Century Furope, Rout-
ledge, (1992).

J.D. Bernal, Science and Industry in the 19th Century, Indiana University Press,
Bloomington, (1970).

Marie Boaz, Robert Boyle and Seventeenth Century Chemistry, Cambridge University
Press (1958).

J.G. Crowther, Scientists of the Industrial Revolution, The Cresset Press, London
(1962).

R.E. Schofield, The Lunar Society of Birmingham, Oxford University Press (1963).
L.T.C. Rolt, Isambard Kingdom Brunel, Arrow Books, London (1961).

J.D. Bernal, Science in History, Penguin Books Ltd. (1969).

Bertrand Russell, The Impact of Science on Society, Unwin Books, London (1952).
Wilbert E. Moore, The Impact of Industry, Prentice Hall (1965).

Charles Morazé, The Nineteenth Century, George Allen and Unwin Ltd., London
(1976).

Carlo M. Cipolla (editor), The Fontana Economic History of Europe, Fontana/Collins,
Glasgow (1977).

Richard Storry, A History of Modern Japan, Penguin Books Ltd. (1960).

Martin Gerhard Geisbrecht, The Fvolution of Economic Society, W.H. Freeman and
Co. (1972).

R. Owen, A New View of Society, or, FEssays on the Formation of the Human Char-
acter Preparatory for the Development of a Plan for Gradually Ameliorating the
Condition of Mankind, Longman, London, (1916).

R. Owen, The Life of Robert Owen, by Himself, ed. M. Beer, Knopf, New York,
(1920).

R. Podmore, Robert Owen, A Biography, Allan and Unwin, (1906).

G.D.H. Cole, Life of Robert Owen, Macmillan, (1930).

J. Butt, ed., Robert Owen: Prince of Cotton Spinners, David and Charles, (1971).
G. Claeys, ed., A New View of Society and other writings by Robert Owen, Penguin
Classics, (1991).

G. Claeys, ed., Selected Works of Robert Owen in 4 volumes, Pickering, (1993).



6.24.

41

42.
43.

44.
45.

46.

47.

48.
49.

0.

o1.
52.

93.

o4.

99.

96.

57.

98.

99.

60.

61.

62.

63.
64.

65.

POPULATION AND GOODS PER CAPITA 273

R. Sobel, The Big Board: A History of the New York Stock Market, Beard Books,
(2000).

A. Kohn, No Contest - The Case Against Competition, Houghton Mifflin Co., (1986).
A.T. Vanderbilt, Fortune’s Children: The Fall of the House of Vanderbilt, William
Morrow, New York, (1989).

D. Nasaw, Andrew Carnegie, Penguin Press, New York, (2006).

J.R.T. Hughes, The Vital Few: American Economic Progress and its Protagonists,
Houghton and Mifflin, Boston, (1965).

H. Livesay, Andrew Carnegie and the Rise of Big Business, Houghton Mifflin, Boston,
(1975).

G. Wright, The Origins of American Industrial Success, 1879-1940, American Eco-
nomic Review, 80, 651-668, (1990).

A. Carnegie, Autobiography of Andrew Carnegie, Houghton Mifflin, Boston, (1920).
A. Carnegie, Triumphant Democracy, or, Fifty Year’s March of the Republic, Scrib-
ners, New York, (1886).

A. Maddison, The World Economy: A Millenial Perspective, Overseas Press, New
Delhi, (2003).

M. Steinberg, Voices of Revolution, 1917, Yale University Press, (2001).

R. Malone, Analysing the Russian Revolution, Cambridge University Press, Mel-
bourne, (2004).

O. Figes, A People’s Tragedy: The Russian Revolution, 1891-1924, ISBN 0-14-
024364-X.

M.B. Levin, Political Hysteria in America: The Democratic Capacity for Repression,
Basic Books, (1971).

J.E. Haynes, Red Scare of Red Menace? American Communism and Anti Commu-
nism in the Cold War Era, Ivan R. Dee, (2000).

A. Fried, McCarthyism, The Great American Red Scare: A Documentary History,
Oxford University Press, (1997).

T. Morgan, Reds: McCarthyism in Twentieth-Century America, Random House,
(2004).

E. Schrecker, Many Are the Crimes: McCarthyism in America, Little, Brown, (1998).
R. Fishman, Bourgois Utopias: The Rise and Fall of Suburbia, Basic Books, (1987).
R. Fishman, America’s New City: Megalopolis Unbounded, Wilson Quarterly, 14,
24-45, (1990).

J. Borchert, Residential City Suburbs: The Emergence of a New Suburban Type,
1880-1930, Journal of Urban History, 22, 283-307, (1996).

K.A. Daniellsen et al., Retracting Suburbia: Smart Growth and the Future of Housing,
Housing Policy Debate, 10, 513-540, (1999).

J. Garreau, Edge City: Life on the New Frontier, Doubleday, New York, (1991).
R.E. Lang, Fdgeless Cities: Exploring the Elusive Metropolis, Brookings Institution
Press, Washington D.C., (2002).

S.B. Warner, Streetcar Suburbs: The Process of Growth in Boston 1870-1890, Cam-
bridge Mass., (1962).



274

66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.

38.
89.

90
91
92
93

A HISTORY OF THE EARTH

K.M. Kruse and T.J. Sugrue, eds., The New Suburban History, University of Chicago
Press, (2006).

B. Kelly, Expanding the American Dream: Building and Rebuilding Levittown, State
University of Albany Press, Albany NY, (1993).

J.E. Stiglitz, Globalization and its Discontents, W.W. Norton, New York, (2002).
J.E. Stiglitz, Making Globalization Work, W.W. Norton, New York, (2006).

M. Steger, Globalization: A Very Short Introduction, Oxford University Press, (2003).
A. MacGillivray, A Brief History of Globalization: The Untold Story of our Incredibly
Shrinking Plannet, Carroll and Graf, (2006).

T.L. Friedman, The World is Flat, Farrar, Straus and Giroux, (2006).

J. Pilger, The New Rulers of the World, Verso Books, (2003).

R.J. Barrow, Determinants of Economic Growth: A Cross-Country Empirical Study,
MIT Press, Cambridge MA, (1997).

D.K. Foley, Growth and Distribution, Harvard University Press, (1999).

C.I. Jones, Introduction to Economic Growth, 2nd ed., W.W. Norton, (2002).

S. Vaclav, China’s Environmental Crisis: An Inquery into the Limits of National
Development, M.E. Sharpe, Armonk, (1992).

J.D. Hammond and C.H. Claire, eds., Making Chicago Price Theory: Friedman-
Stigler Correspondence 1945-1957, , Routledge, (2006).

R. Tilman, The Intellectual Legacy of Thorstein Veblen: Unresolved Issues, Green-
wood Press, (1996).

R. Tilman, Thorstein Veblen and His Critics, 1891-1963, Princeton University Press,
(1992).

K. McCormick, Veblen in Plain English, Cambria Press, (2006).

J. Dorfman, Thorstein Veblen and His America, Harvard University Press, (1934).
J. Homer, ed., The Gandhi Reader: A Sourcebook of his Life and Writings, Grove
Press, New York, (1956).

G. Sharp, Gandhi as a Political Strategist, with FEssays on Ethics and Politics, Ex-
tending Horizon Books, Boston, (1979).

J.V. Bondurant, Conquest of Violence: The Gandhian Philosophy of Conflict, Prince-
ton University Press, (1988).

L. Fischer, The Essential Gandhi: An Anthology of his Writings on His Life, Work
and Ideas, Vintage, New York, (2002).

M.K. Gandhi, Hind Swaraj and Other Writings, edited by A.J. Parel, Cambridge
Texts in Modern Politics, (2006).

C. Bode, Best of Thoreau’s Journals, Southern Illinois University Press, (1967).

J. Meyerson et al., The Cambridge Companion to Henry David Thoreau, Cambridge
University Press, (1995).

W. Howarth, The Book of Concord: Thoreau’s Life as a Writer, Viking Press, (1982).
W. Harding, Days of Henry Thoreau, Princeton University Press, (1982).

T. Roszak, The Making of a Counter Culture, (1970).

E. Nelson, The British Counterculture 1966-1973, Macmillan, London, (1989).



6.24.

94

95.
96.
97.
98.
99.
100.
101.
102.
103.

104.

105.

106.

107.

108.

109.
110.

111.

112.

113.

114.

115.

116.

117.

POPULATION AND GOODS PER CAPITA 275

G. McKay, Senseless Acts of Beauty: Cultures of Resistance since the Sizties, Verso,
London, (1996).

K. Goffman, Counterculture Through the Ages, Villard Books, (2004).

Brundtland Commission, Our Common Future, Oxford University Press, (1987).
G.O. Barney, , The Unfinished Agenda: The Citizen’s Policy Guide to Environmental
Issues, Thomas Y. Crowell, New York, (1977).

R.E. Benedick, Ozone Diplomacy: New Directions in Safequarding the Planet, Har-
vard University Press, Cambridge, (1991).

T. Berry, The Dream of the Earth, Sierra Club Books, San Francisco, (1988).

L.R. Brown, The Twenty-Ninth Day, W.W. Norton, New York, (1978).

M.E. Clark, Ariadne’s Thread: The Search for New Modes of Thinking, St. Martin’s
Press, New York, (1989).

W.C. Clark and others, Managing Planet Earth, Special Issue, Scientific American,
September, (1989).

B. Commoner, The Closing Chircle: Nature, Man and Technology, Bantam Books,
New York, (1972).

Council on Environmental Quality and U.S. Department of State, Global 2000 Report
to the President: Entering the Twenty-First Century, Technical Report, Volume 2,
U.S. Government Printing Office, Washington D.C., (1980).

J.C.I. Dooge et al. (editors), Agenda of Science for Environment and Development
into the 21st Century, Cambridge University Press, (1993).

E. Eckholm, The Picture of Health: Environmental Sources of Disease, New York,
(1976).

Economic Commission for Europe, Air Pollution Across Boundaries, United Nations,
New York, (1985).

P.R. Ehrlich, A.H. Ehrlich and J. Holdren, Ecoscience: Population, Resources, En-
vironment, W.H. Freeman, San Francisco, (1977)

P.R. Ehrlich and A.H. Ehrlich, Extinction, Victor Gollancz, London, (1982).

P.R. Ehrlich and A.H. Ehrlich, Healing the Planet, Addison Wesley, Reading MA,
(1991).

C. Flavin, Slowing Global Warming: A Worldwide Strategy, Worldwatch Paper 91,
Worldwatch Institute, Washington D.C., (1989).

H.F. French, Clearing the Air: A Global Agenda , Worldwatch Paper 94, Worldwatch
Institute, Washington D.C.; (1990).

H.F. French, After the Farth Summit: The Future of Environmental Governance,
Worldwatch Paper 107, Worldwatch Institute, Washington D.C., (1992).

G. Hagman and others, Prevention is Better Than Cure, Report on Human Envi-
ronmental Disasters in the Third World, Swedish Red Cross, Stockholm, Stockholm,
(1986).

G. Hardin, “The Tragedy of the Commons”, Science, December 13, (1968).

P.W. Hemily and M.N. Ozdas (eds.) Science and Future Choice, Clarendon, Oxford,
(1979).

IUCN, UNEP, WWF, Caring for the Farth, Earthscan Publications, London, (1991).



276

118

119.

120.

121.

122.
123.

124.
125.

126.

127.

128.

129.

130.

131.
132.

133.

134.
135.

136.
137.
138.
139.
140.

141.

142

A HISTORY OF THE EARTH

L. Rosen and R.Glasser (eds.), Climate Change and Energy Policy, Los Alamos Na-
tional Laboratory, AIP, New York, (1992).

J.J. MacKenzie and M.T. El-Ashry, Ill Winds: Airborne Pollution’s Toll on Trees
and Crops, World Resources Institute, Washington D.C., (1988).

J.T. Mathews (editor), Preserving the Global Environment: The Challenge of Shared
Leadership, W.W. Norton, New York, (1991).

J. McCormick, Acid FEarth, International Institute for Environment and Development,
London, (1985).

N. Myers, The Sinking Ark, Pergamon, New York, (1972).

N. Myers, Conservation of Tropical Moist Forests, National Academy of Sciences,
Washington D.C., (1980).

D.W. Orr, Ecological Literacy, State University of New York Press, Albany, (1992).
D.C. Pirages and P.R. Ehrlich, Ark II: Social Responses to Environmental Impera-
tives, W.H. Freeman, San Francisco, (1974).

J. Rotblat (ed.), Shaping Our Common Future: Dangers and Opportunities (Proceed-
ings of the Forty-Second Pugwash Conference on Science and World Affairs), World
Scientific, London, (1994).

J.C. Ryan, Life Support: Conserving Biological Diversity, Worldwatch Paper 108,
Worldwatch Institute, Washington D.C., (1992).

S.F. Singer, Global Effects of Environmental Pollution, Springer Verlag, New York,
(1971).

B. Stokes, Local Responses to Global Problems: A Key to Meeting Basic Human
Needs, Worldwatch Paper 17, Worldwatch Institute, Washington D.C., (1978).

L. Timberlake, Only One Earth: Living for the Future, BBC/ Earthscan, London,
(1987).

UNEP, Environmental Data Report, Blackwell, Oxford, (published annually).
UNESCO, International Coordinating Council of Man and the Biosphere, MAB Re-
port Series No. 58, Paris, (1985).

P.M. Vitousek, P.R. Ehrlich, A.H. Ehrlich and P.A. Matson, Human Appropriation
of the Products of Photosynthesis, Bioscience, 34, 368-373, (1986).

B. Ward and R. Dubos, Only One Earth, Penguin Books Ltd., (1973).

P. Weber, Abandoned Seas: Reversing the Decline of the Oceans, Worldwatch Paper
116, Worldwatch Institute, Washington D.C., (1993).

E.O. Wilson (ed.), Biodiversity, National Academy Press, Washington D.C., (1988).
E.O. Wilson, The Diversity of Life, Allen Lane, The Penguin Press, London, (1992).
G. Woodwell (ed.), The Earth in Transition: Patterns and Processes of Biotic Im-
poverishment, Cambridge University Press, (1990).

World Commission on Environment and Development, Our Common Future, Oxford
University Press, (1987).

World Resources Institute (WRI), Global Biodiversity Strategy, The World Conser-
vation Union (IUCN), United Nations Environment Programme (UNEP), (1992).
R.L. Heilbroner, The Worldly Philosophers, 5th edition, Simon and Schuster, (1980).
R. Harrod, Life of John Maynard Keynes, Harcourt, Brace, New York, (1951).



6.24.

143.

144.
145.

146.
147.
148.

149.
150.

151.
152.

153.
154.
155.
156.
157.

158.
159.

160.
161.

162.
163.
164.
165.
166.

167.

168.
169.

POPULATION AND GOODS PER CAPITA 277

J.M. Keynes, Economic Consequences of the Peace, Harcourt, Brace, New York,
(1920).

J.M. Keynes, Essays in Persuasion, Harcourt, Brace, New York, (1951).

J.M. Keynes, The General Theory of Employment, Interest and Money, Harcourt,
Brace, New York, (1964).

R. Lekachman, The Age of Keynes, Random House, New York, (1966).

R. Florida, The Rise of the Creative Class, Basic Books, (2002).

H.E. Daly, Steady-State Economics: The Economics of Biophysical Equilibrium and
Moral Growth, W.H. Freeman, San Francisco, (1977).

H.E. Daly, Steady-State Economics, Island Press, Washington D.C., (1991).

H.E. Daly, Economics, Ecology and Ethics: Essays Towards a Steady-State Economy,
W.H. Freeman, San Francisco, (1980).

H.E. Daly, For the Common Good, Beacon Press, Boston, (1989).

Aspen Institute for Humanistic Studies, Program in International Affairs, The Plan-
etary Bargain, Aspen, Colorado, (1975).

W. Berry, Home Economics, North Point Press, San Francisco, (1987).

L.R. Brown, Building a Sustainable Society, W.W. Norton, (1981).

L.R. Brown, and P. Shaw, Siz Steps to a Sustainable Society, Worldwatch Paper 48,
Worldwatch Institute, Washington D.C., (1982).

E. Eckholm, Planting for the Future: Forestry for Human Needs, Worldwatch Paper
26, Worldwatch Institute, Washington D.C., (1979).

R. Goodland, H. Daly, S. El Serafy and B. von Droste (editors), Environmentally Sus-
tainable Economic Development: Building on Brundtland, UNESCO, Paris, (1991).
F. Hirsch, Social Limits to Growth, Harvard University Press, Cambridge, (1976).
W. Leontief, et al., The Future of the World Economy, Oxford University Press,
(1977).

M. Lipton, Why Poor People Stay Poor, Harvard University Press, (1977).

J. McHale, and M.C. McHale, Basic Human Needs: A Framework for Action, Center
for Integrative Studies, Huston, (1977).

D.L. Meadows, Alternatives to Growth, Ballinger, Cambridge, (1977).

D.H. Meadows, The Global Citizen, Island Press, Washington D.C.; (1991).

D.L. Meadows, and D.H. Meadows (editors), Toward Global Equilibrium, Wright-
Allen Press, Cambridge, Mass., (1973).

L.W. Milbrath, FEnvisioning a Sustainable Society, State University of New York
Press, Albany, (1989).

R.E. Miles, Awakening from the American Dream: The Social and Political Limits
to Growth, Universe Books, New York, (1976).

S. Postel, and L. Heise, Reforesting the Earth , Worldwatch Paper 83, Worldwatch
Institute, Washington D.C., (1988).

M. Sagoft, The Economy of the Earth, Cambridge University Press, (1988).

E.F. Schumacher, Small is Beautiful: Economics As If People Mattered, Harper and
Row, New York, (1973).



278

170.

171.

172.

173.

A HISTORY OF THE EARTH

World Bank, World Development Report, Oxford University Press, New York, (pub-
lished annually).

G.P. Zachary, A ‘Green FEconomist’ Warns Growth May Be Overrated, The Wall
Street Journal, June 25, (1996).

H.E. Daly, Sustainable Growth - An Impossibility Theorem, Development, 3, 45-47,
(1990).

H.E. Daly and K.N. Townsend, (editors), Valuing the Earth. FEconomics, Ecology,
FEthics, MIT Press, Cambridge, Massachusetts, (1993)



Chapter 7
THE HISTORY OF COMPUTERS

7.1 Pascal and Leibniz

If civilization survives, historians in the distant future will undoubtedly regard the inven-
tion of computers as one of the most important steps in human cultural evolution - as
important as the invention of writing or the invention of printing. The possibilities of ar-
tificial intelligence have barely begun to be explored, but already the impact of computers
on society is enormous.

The first programmable universal computers were completed in the mid-1940’s; but
they had their roots in the much earlier ideas of Blaise Pascal (1623-1662), Gottfried
Wilhelm Leibniz (1646-1716), Joseph Marie Jacquard (1752-1834) and Charles Babbage
(1791-1871).

In 1642, the distinguished French mathematician and philosopher Blaise Pascal com-
pleted a working model of a machine for adding and subtracting. According to tradition,
the idea for his “calculating box” came to Pascal when, as a young man of 17, he sat
thinking of ways to help his father (who was a tax collector). In describing his machine,
Pascal wrote: “I submit to the public a small machine of my own invention, by means of
which you alone may, without any effort, perform all the operations of arithmetic, and may
be relieved of the work which has often times fatigued your spirit when you have worked
with the counters or with the pen.”

Pascal’s machine worked by means of toothed wheels. It was much improved by Leibniz,
who constructed a mechanical calculator which, besides adding and subtracting, could also
multiply and divide. His first machine was completed in 1671; and Leibniz’ description of
it, written in Latin, is preserved in the Royal Library at Hanover: “There are two parts
of the machine, one designed for addition (and subtraction), and the other designed for
multiplication (and division); and they should fit together. The adding (and subtracting)
machine coincides completely with the calculating box of Pascal. Something, however,
must be added for the sake of multiplication...”

“The wheels which represent the multiplicand are all of the same size, equal to that of
the wheels of addition, and are also provided with ten teeth which, however, are movable
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Figure 7.1: Blaise Pascal (1623-1662) was a French mathematician, physicist,
writer, inventor and theologian. Pascal, a child prodigy, was educated by his
father, who was a tax-collector. He invented his calculating box to make his
father’s work less tedious.
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Figure 7.2: The German mathematician, philosopher and universal genius Got-
tfried Wilhelm von Leibniz (1646-1716) was a contemporary of Isaac Newton.
He invented differential and integral calculus independently, just as Newton
had done many years earlier. However, Newton had not published his work on
calculus, and thus a bitter controversy over priority was precipitated. When
his patron, the Elector of Hanover moved to England to become George I,
Leibniz was left behind because the Elector feared that the controversy would
alienate the English. Leibniz extended Pascal’s calculating box so that it could
perform multiplication and division. Calculators of his design were still being
used in the 1960’s.

so that at one time there should protrude 5, at another 6 teeth, etc., according to whether
the multiplicand is to be represented five times or six times, etc.”

“For example, the multiplicand 365 consists of three digits, 3, 6, and 5. Hence the same
number of wheels is to be used. On these wheels, the multiplicand will be set if from the
right wheel there protrude 5 teeth, from the middle wheel 6, and from the left wheel 3.”

7.2 Jacquard and Babbage

By 1810, calculating machines based on Leibniz’ design were being manufactured commer-
cially; and mechanical calculators of a similar (if much improved) design could be found in
laboratories and offices until the 1960’s. The idea of a programmable universal computer
is due to the English mathematician, Charles Babbage, who was the Lucasian Professor of
Mathematics at Cambridge University. (In the 17th century, Isaac Newton held this post,
and in the 20th century, P.A.M. Dirac and Stephen Hawking also held it.)

In 1812, Babbage conceived the idea of constructing a machine which could automat-
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Figure 7.3: Charles Babbage (1791-1871) and his analytical engine.

ically produce tables of functions, provided that the functions could be approximated
by polynomials. He constructed a small machine, which was able to calculate tables of
quadratic functions to eight decimal places, and in 1832 he demonstrated this machine to
the Royal Society and to representatives of the British government.

The demonstration was so successful that Babbage secured financial support for the
construction of a large machine which would tabulate sixth-order polynomials to twenty
decimal places. The large machine was never completed, and twenty years later, after
having spent seventeen thousand pounds on the project, the British government withdrew
its support. The reason why Babbage’s large machine was never finished can be understood
from the following account by Lord Moulton of a visit to the mathematician’s laboratory:

“One of the sad memories of my life is a visit to the celebrated mathematician and
inventor, Mr. Babbage. He was far advanced in age, but his mind was still as vigorous as
ever. He took me through his workrooms.”

“In the first room I saw the parts of the original Calculating Machine, which had been
shown in an incomplete state many years before, and had even been put to some use. I
asked him about its present form. ‘I have not finished it, because in working at it, I came
on the idea of my Analytical Machine, which would do all that it was capable of doing, and
much more. Indeed, the idea was so much simpler that it would have taken more work to
complete the Calculating Machine than to design and construct the other in its entirety;
so I turned my attention to the Analytical Machine.””

“After a few minutes talk, we went into the next workroom, where he showed me the
working of the elements of the Analytical Machine. I asked if I could see it. ‘I have never
completed it,” he said, ‘because I hit upon the idea of doing the same thing by a different
and far more effective method, and this rendered it useless to proceed on the old lines.””

“Then we went into a third room. There lay scattered bits of mechanism, but I saw no
trace of any working machine. Very cautiously I approached the subject, and received the
dreaded answer: ‘It is not constructed yet, but I am working at it, and will take less time
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Figure 7.4: Joseph Marie Jacquard (1752-1834) invented a loom which could
be programed to produce any design by means of punched cards. News of
his invention inspired Babbage to invent a universal programmable computing
machine.

to construct it altogether than it would have taken to complete the Analytical Machine
from the stage in which I left it.” T took leave of the old man with a heavy heart.”

Babbage’s first calculating machine was a special-purpose mechanical computer, de-
signed to tabulate polynomial functions; and he abandoned this design because he had
hit on the idea of a universal programmable computer. Several years earlier, the French
inventor Joseph Marie Jacquard had constructed an automatic loom in which large wooden
“punched cards” were used to control the warp threads. Inspired by Jacquard’s invention,
Babbage planned to use punched cards to program his universal computer. (Jacquard’s
looms could be programmed to weave extremely complex patterns: A portrait of the in-
ventor, woven on one of his looms in Lyon, hung in Babbage’s drawing room.)

One of Babbage’s frequent visitors was Augusta AdaEl, Countess of Lovelace (1815-
1852), the daughter of Lord and Lady Byron. She was a mathematician of considerable abil-
ity, and it is through her lucid descriptions that we know how Babbage’s never-completed
Analytical Machine was to have worked.

! The programming language ADA is named after her.
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Figure 7.5: Jacquard’s loom.
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Figure 7.6: Lord Byron’s daughter, Augusta Ada, Countess of Lovelace (1815-
1852) was an accomplished mathematician and a frequent visitor to Babbage’s
workshop. It is through her lucid description of his ideas that we know how
Babbage’s universal calculating machine was to have worked. The program-
ming language ADA is named after her.
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7.3 Harvard’s sequence-controlled calculator

The next step towards modern computers was taken by Herman Hollerith, a statistician
working for the United States Bureau of the Census. He invented electromechanical ma-
chines for reading and sorting data punched onto cards. Hollerith’s machines were used to
analyze the data from the 1890 United States Census. Because the Census Bureau was a
very limited market, Hollerith branched out and began to manufacture similar machines
for use in business and administration. His company was later bought out by Thomas J.
Watson, who changed its name to International Business Machines.

In 1937, Howard Aiken, of Harvard University, became interested in combining Bab-
bage’s ideas with some of the techniques which had developed from Hollerith’s punched
card machines. He approached the International Business Machine Corporation, the largest
manufacturer of punched card equipment, with a proposal for the construction of a large,
automatic, programmable calculating machine.

Aiken’s machine, the Automatic Sequence Controlled Calculator (ASCC), was com-
pleted in 1944 and presented to Harvard University. Based on geared wheels, in the
Pascal-Leibniz-Babbage tradition, ASCC had more than three quarters of a million parts
and used 500 miles of wire. ASCC was unbelievably slow by modern standards - it took
three-tenths of a second to perform an addition - but it was one of the first programmable
general-purpose digital computers ever completed. It remained in continuous use, day and
night, for fifteen years.

Figure 7.7: The Automatic Sequence-Controlled Calculator ASCC can still be
seen by visitors at Harvard’s science building and cafeteria.
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7.4 The first electronic computers

In the ASCC, binary numbers were represented by relays, which could be either on or off.
The on position represented 1, while the off position represented 0, these being the only
two digits required to represent numbers in the binary (base 2) system. Electromechanical
calculators similar to ASCC were developed independently by Konrad Zuse in Germany
and by George R. Stibitz at the Bell Telephone Laboratory.

Electronic digital computers

In 1937, the English mathematician A.M. Turing published an important article in the
Proceedings of the London Mathematical Society in which envisioned a type of calculating
machine consisting of a long row of cells (the “tape”), a reading and writing head, and a
set of instructions specifying the way in which the head should move the tape and modify
the state and “color” of the cells on the tape. According to a hypothesis which came to
be known as the “Church-Turing hypothesis”, the type of computer proposed by Turing
was capable of performing every possible type of calculation. In other words, the Turing
machine could function as a universal computer.

In 1943, a group of English engineers, inspired by the ideas of Alan Turing and those of
the mathematician M.H.A. Newman, completed the electronic digital computer Colossus.
Colossus was the first large-scale electronic computer. It was used to break the German
Enigma code; and it thus affected the course of World War II.

In 1946, ENIAC (Electronic Numerical Integrator and Calculator) became operational.
This general-purpose computer, designed by J.P. Eckert and J.W. Mauchley of the Uni-
versity of Pennsylvania, contained 18,000 vacuum tubes, one or another of which was often
out of order. However, during the periods when all its vacuum tubes were working, an
electronic computer like Colossus or ENIAC could shoot ahead of an electromechanical
machine (such as ASCC) like a hare outdistancing a tortoise.

During the summer of 1946, a course on “The Theory and Techniques of Electronic
Digital Computers” was given at the University of Pennsylvania. The ideas put forward in
this course had been worked out by a group of mathematicians and engineers headed by
J.P. Eckert, J.W. Mauchley and John von Neumann, and these ideas very much influenced
all subsequent computer design.

Cybernetics

The word “Cybernetics”, was coined by the American mathematician Norbert Wiener
(1894-1964) and his colleagues, who defined it as “the entire field of control and commu-
nication theory, whether in the machine or in the animal”. Wiener derived the word from
the Greek term for “steersman”.

Norbert Wiener began life as a child prodigy: He entered Tufts University at the age
of 11 and received his Ph.D. from Harvard at 19. He later became a professor of math-
ematics at the Massachusetts Institute of Technology. In 1940, with war on the horizon,
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Figure 7.8: Alan Turing (1912-1954). He is considered to be the father of the-
oretical computer science. During World War II, Turing’s work allowed the
allies to crack the German’s code. This appreciably shortened the length of
the war in Europe, and saved many lives.

Figure 7.9: John von Neumann (1903-1957, right) with J. Robert Oppenheimer.
In the background is an electronic digital computer.



7.4. THE FIRST ELECTRONIC COMPUTERS 289

Figure 7.10: MIT’s Norbert Wiener (1894-1964) coined the word “Cybernetics”,
derived from a Greek word meaning “steersman”. Wiener was one of the
principle organizers of the Macy Conferences.

Wiener sent a memorandum to Vannevar Bush, another MIT professor who had done pi-
oneering work with analogue computers, and had afterwards become the chairman of the
U.S. National Defense Research Committee. Wiener’s memorandum urged the American
government to support the design and construction of electronic digital computers, which
would make use of binary numbers, vacuum tubes, and rapid memories. In such machines,
the memorandum emphasized, no human intervention should be required except when data
was to be read into or out of the machine.

Like Leo Szilard, John von Neumann, Claude Shannon and Erwin Schrodinger, Norbert
Wiener was aware of the relation between information and entropy. In his 1948 book Cy-
bernetics he wrote: “...we had to develop a statistical theory of the amount of information,
in which the unit amount of information was that transmitted by a single decision between
equally probable alternatives. This idea occurred at about the same time to several writers,
among them the statistician R.A. Fisher, Dr. Shannon of Bell Telephone Laboratories, and
the author. Fisher’s motive in studying this subject is to be found in classical statistical
theory; that of Shannon in the problem of coding information; and that of the author in
the problem of noise and message in electrical filters... The notion of the amount of in-
formation attaches itself very naturally to a classical notion in statistical mechanics: that
of entropy. Just as the amount of information in a system is a measure of its degree of
organization, so the entropy of a system is a measure of its degree of disorganization; and
the one is simply the negative of the other.”

During World War II, Norbert Wiener developed automatic systems for control of anti-
aircraft guns. His systems made use of feedback loops closely analogous to those with
which animals coordinate their movements. In the early 1940’s, he was invited to attend a
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Figure 7.11: Margaret Mead (1901-1978) and Gregory Bateson (1904-1980).
They used the feedback loops studied by Wiener to explain many aspects of
human behavior. Bateson is considered to be one of the main founders of the
discipline Biosemiotics, which considers information to be the central feature
of living organisms.

series of monthly dinner parties organized by Arturo Rosenbluth, a professor of physiology
at Harvard University. The purpose of these dinners was to promote discussions and
collaborations between scientists belonging to different disciplines. The discussions which
took place at these dinners made both Wiener and Rosenbluth aware of the relatedness of
a set of problems that included homeostasis and feedback in biology, communication and
control mechanisms in neurophysiology, social communication among animals (or humans),
and control and communication involving machines.

Wiener and Rosenbluth therefore tried to bring together workers in the relevant fields
to try to develop common terminology and methods. Among the many people whom they
contacted were the anthropologists Gregory Bateson and Margaret Mead, Howard Aiken
(the designer of the Automatic Sequence Controlled Calculator), and the mathematician
John von Neumann. The Josiah Macy Jr. Foundation sponsored a series of ten yearly
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meetings, which continued until 1949 and which established cybernetics as a new research
discipline. It united areas of mathematics, engineering, biology, and sociology which had
previously been considered unrelated. Among the most important participants (in addition
to Wiener, Rosenbluth, Bateson, Mead, and von Neumann) were Heinz von Foerster, Kurt
Lewin, Warren McCulloch and Walter Pitts. The Macy conferences were small and infor-
mal, with an emphasis on discussion as opposed to the presentation of formal papers. A
stenographic record of the last five conferences has been published, edited by von Foerster.
Transcripts of the discussions give a vivid picture of the enthusiastic and creative atmo-
sphere of the meetings. The participants at the Macy Conferences perceived Cybernetics
as a much-needed bridge between the natural sciences and the humanities. Hence their
enthusiasm. Wiener’s feedback loops and von Neumann’s theory of games were used by
anthropologists Mead and Bateson to explain many aspects of human behavior.

7.5 Biosemiotics

The Oxford Dictionary of Biochemistry and Molecular Biology (Oxford University Press,
1997) defines Biosemiotics as “the study of signs, of communication, and of information in
living organisms”. The biologists Claus Emmeche and K. Kull offer another definition of
Biosemiotics: “biology that interprets living systems as sign systems”.

The American philosopher Charles Sanders Peirce (1839-1914) is considered to be one of
the founders of Semiotics (and hence also of Biosemiotics). Peirce studied philosophy and
chemistry at Harvard, where his father was a professor of mathematics and astronomy. He
wrote extensively on philosophical subjects, and developed a theory of signs and meaning
which anticipated many of the principles of modern Semiotics. Peirce built his theory on a
triad: (1) the sign, which represents (2) something to (3) somebody. For example, the sign
might be a broken stick, which represents a trail to a hunter, it might be the arched back of
a cat, which represents an aggressive attitude to another cat, it might be the waggle-dance
of a honey bee, which represents the coordinates of a source of food to her hive-mates, or
it might be a molecule of trans-10-cis-hexadecadienol, which represents irresistible sexual
temptation to a male moth of the species Bombyx mori. The sign might be a sequence of
nucleotide bases which represents an amino acid to the ribosome-transfer-RNA system, or
it might be a cell-surface antigen which represents self or non-self to the immune system.
In information technology, the sign might be the presence or absence of a pulse of voltage,
which represents a binary digit to a computer. Semiotics draws our attention to the sign
and to its function, and places much less emphasis on the physical object which forms
the sign. This characteristic of the semiotic viewpoint has been expressed by the Danish
biologist Jesper Hoffmeyer in the following words: “The sign, rather than the molecule, is
the basic unit for studying life.”

A second important founder of Biosemiotics was Jakob von Uexkill (1864-1944). He
was born in Estonia, and studied zoology at the University of Tartu. After graduation,
he worked at the Institute of Physiology at the University of Heidelberg, and later at the
Zoological Station in Naples. In 1907, he was given an honorary doctorate by Heidelberg
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Figure 7.12: Charles Sanders Pearce (1839-1914).

Figure 7.13: Jakob Johann Baron von Uexkiill (1964-1944). Together with
Pearce and Bateson, he is one of the principle founders of Biosemiotics.
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for his studies of the physiology of muscles. Among his discoveries in this field was the first
recognized instance of negative feedback in an organism. Von Uexkiill’s later work was
concerned with the way in which animals experience the world around them. To describe
the animal’s subjective perception of its environment he introduced the word Umwelt; and
in 1926 he founded the Institut fur Umweltforschung at the University of Heidelberg. Von
Uexkiill visualized an animal - for example a mouse - as being surrounded by a world
of its own - the world conveyed by its own special senses organs, and processed by its
own interpretative systems. Obviously, the Umwelt will differ greatly depending on the
organism. For example, bees are able to see polarized light and ultraviolet light; electric
eels are able to sense their environment through their electric organs; many insects are
extraordinarily sensitive to pheromones; and a dog’s Umwelt far richer in smells than that
of most other animals. The Umwelt of a jellyfish is very simple, but nevertheless it existsE]
Von Uexkiill’s Umwelt concept can even extend to one-celled organisms, which receive
chemical and tactile signals from their environment, and which are often sensitive to light.
The ideas and research of Jakob von Uexkiill inspired the later work of the Nobel Laureate
ethologist Konrad Lorenz, and thus von Uexkiill can be thought of as one of the founders of
ethology as well as of Biosemiotics. Indeed, ethology and Biosemiotics are closely related.

Biosemiotics also values the ideas of the American anthropologist Gregory Bateson
(1904-1980). He was married to another celebrated anthropologist, Margaret Mead, and
together they applied Norbert Wiener’s insights concerning feedback mechanisms to soci-
ology, psychology and anthropology. Bateson was the originator of a famous epigrammatic
definition of information: “..a difference which makes a difference” . This definition occurs
in Chapter 3 of Bateson’s book, Mind and Nature: A Necessary Unity, Bantam, (1980),
and its context is as follows: “To produce news of a difference, i.e. information”, Bateson
wrote, “there must be two entities... such that news of their difference can be represented
as a difference inside some information-processing entity, such as a brain or, perhaps, a
computer. There is a profound and unanswerable question about the nature of these two
entities that between them generate the difference which becomes information by making
a difference. Clearly each alone is - for the mind and perception - a non-entity, a non-
being... the sound of one hand clapping. The stuff of sensation, then, is a pair of values of
some variable, presented over time to a sense organ, whose response depends on the ratio
between the members of the pair.”

7.6 Some personal memories of early computers

I hope that readers will forgive me if I tell them of my own personal memories of early
computers:

When I arrived at Imperial College (then part of the University of London) in 1962,
I worked with a crystallographic group that using the Mercury computer at University

2 Tt is interesting to ask to what extent the concept of Umwelt can be equated to that of consciousness.
To the extent that these two concepts can be equated, von Uexkiill's Umweltforschung offers us the
opportunity to explore the phylogenetic evolution of the phenomenon of consciousness.
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College to do the calculations needed to arrive at molecular structures. This gave me the
chance to use Mercury to do quantum chemical calculations. I used to go over to University
College with the crystallographers at night, because time on the computer was so expensive
that we could only afford to use it at night. I would make a bed for myself out of three
chairs in a row and would try to sleep. At 3 AM or 4 AM they would wake me up and
would say “Now it’s your turn”.

Mercury was as big as a house, but could do far less than a modern laptop. It had
50,000 or so vacuum tubes which required cooling. The cooling system sometimes broke
down, and one or another of the vacuum tubes sometimes failed, so one had to be grateful
for the periods when Mercury was working. Our programs were written on punched tape
in a language called CHLF3. (The letters stood for Cambridge, London, Harwell and
Farnsborough, the four places that had Mercurys). After we had read the paper tape into
the computer, the program was converted into a magnetic form on a rapidly rotating drum,
and then checked against the original input. If it did not check, we had a so-called “drum
parity”, which meant that we had to stop the computer and restart it by hand, using a
bewildering array of manual controls.

After finishing the work on Mercury at 6 AM or so, I would walk home, passing through
the almost-deserted streets of Soho, and seeing pale-faced teenagers who had been up all
night, high on amphetamines. They were sitting on the pavement near an underground
station, waiting for it to open.

After we had used Mercury for two years or so, IBM gave Imperial College one of their
early computers. Using this was much better. Programs for the IBM machine were written
on punched cards. We just went over to the machine with our punched cards and stood
in line to have them read into the computer. Then a few minutes later we were handed a
printout of the output.

The IBM was much better than the machines that were available in eastern Europe, and
for this reason I was contacted by Janos Ladik and his group at the Hungarian Academy of
Science, who proposed a collaboration. We worked together for several years, calculating
the electronic structure of a number of polypeptides and polynucleotides.

In 1965, Janos Ladik invited me to attend a meeting of quantum theorists and computer
scientists from both East and West, held at a town on the Hungarian Puszta, the great
Hungarian plain east of Budapest. At the meeting, Enrico Clementi spoke about computer
programs that he had developed for performing ab-initid®| calculation of the electronic
structure of molecules. Clementi was an important IBM scientist, and he had his own
laboratory with a large computer which he could use as he liked. The programs that he
described to us took hundreds of hours to complete an electronic structure calculation on
a single molecule.

In the question period after Clementi’s lecture, someone from the audience said: “It’s
all right for you, Clementi. You can use hundreds of hours on a single calculation if you
want to, because you are sitting at IBM with your own dedicated computer. But what

3 ab-initio is a Latin expression meaning “from the beginning”. Such programs are completely free of
input parameters based on experiments.
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Figure 7.14: Enrico Clementi (born 1931) explained to us that microminiatur-
ization would soon make computers hundreds of times faster, smaller and less
expensive. He was completely right.

about the rest of us? What good are these programs to us?”

Clementi answered: “In a few years, computers will be hundreds of times faster, and
they will also be cheaper.” The audience asked: “And how will this happen?”. Clementi
answered: “Through microminiaturization.” He was completely right. That was exactly
what happened.

7.7 The invention of transistors

Microelectronics

The problem of unreliable vacuum tubes was solved in 1948 by John Bardeen, William
Shockley and Walter Brattain of the Bell Telephone Laboratories. Application of quantum
theory to solids had lead to an understanding of the electrical properties of crystals. Like
atoms, crystals were found to have allowed and forbidden energy levels.

The allowed energy levels for an electron in a crystal were known to form bands, i.e.,
some energy ranges with many allowed states (allowed bands), and other energy ranges
with none (forbidden bands). The lowest allowed bands were occupied by electrons, while
higher bands were empty. The highest filled band was called the “valence band”, and the
lowest empty band was called the “conduction band”.

According to quantum theory, whenever the valence band of a crystal is only partly
filled, the crystal is a conductor of electricity; but if the valence band is completely filled
with electrons, the crystal is an electrical insulator. (A completely filled band is analogous
to a room so packed with people that none of them can move.)

In addition to conductors and insulators, quantum theory predicted the existence of
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“semiconductors” - crystals where the valence band is completely filled with electrons, but
where the energy gap between the conduction band and the valence band is very small.
For example, crystals of the elements silicon and germanium are semiconductors. For such
a crystal, thermal energy is sometimes enough to lift an electron from the valence band to
the conduction band.

Bardeen, Shockley and Brattain found ways to control the conductivity of germanium
crystals by injecting electrons into the conduction band, or alternatively by removing elec-
trons from the valence band. They could do this by “doping” the crystals with appropriate
impurities, or by injecting electrons with a special electrode. The semiconducting crystals
whose conductivity was controlled in this way could be used as electronic valves, in place
of vacuum tubes.

By the 1960’s, replacement of vacuum tubes by transistors in electronic computers had
led not only to an enormous increase in reliability and a great reduction in cost, but also
to an enormous increase in speed. It was found that the limiting factor in computer speed
was the time needed for an electrical signal to propagate from one part of the central
processing unit to another. Since electrical impulses propagate with the speed of light,
this time is extremely small; but nevertheless, it is the limiting factor in the speed of
electronic computers.

7.8 The Traitorous Eight

According to the Wikipedia article on Shockley,

“In 1956 Shockley moved from New Jersey to Mountain View, California to start Shock-
ley Semiconductor Laboratory to live closer to his ailing mother in Palo Alto, California.
The company, a division of Beckman Instruments, Inc., was the first establishment working
on silicon semiconductor devices in what came to be known as Silicon Valley.

“His way [of leading the group] could generally be summed up as domineering and
increasingly paranoid. In one well-known incident, he claimed that a secretary’s cut thumb
was the result of a malicious act and he demanded lie detector tests to find the culprit, when
in reality, the secretary had simply grabbed at a door handle that happened to have an
exposed tack on it for the purpose of hanging paper notes on. After he received the Nobel
Prize in 1956 his demeanor changed, as evidenced in his increasingly autocratic, erratic and
hard-to-please management style. In late 1957, eight of Shockley’s researchers, who would
come to be known as the ‘traitorous eight, resigned after Shockley decided not to continue
research into silicon-based semiconductors. They went on to form Fairchild Semiconductor,
a loss from which Shockley Semiconductor never recovered. Over the course of the next

20 years, more than 65 new enterprises would end up having employee connections back
to Fairchild.”
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Figure 7.15: William Shockley (1910-1989) shared the 1956 Nobel Prize in
Physics with John Bardeen and Walter Brattain.

Figure 7.16: The Traitorous Eight: From left to right, Gordon Moore, C. Sheldon
Roberts, Eugene Kleiner, Robert Noyce, Victor Grinich, Julius Blank, Jean
Hoerni and Jay Last.
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7.9 Integrated circuits

In order to reduce the propagation time, computer designers tried to make the central
processing units very small; and the result was the development of integrated circuits
and microelectronics. (Another motive for miniaturization of electronics came from the
requirements of space exploration.)

Integrated circuits were developed in which single circuit elements were not manufac-
tured separately. Instead, the whole circuit was made at one time. An integrated circuit
is a sandwich-like structure, with conducting, resisting and insulating layers interspersed
with layers of germanium or silicon, “doped ” with appropriate impurities. At the start of
the manufacturing process, an engineer makes a large drawing of each layer. For example,
the drawing of a conducting layer would contain pathways which fill the role played by
wires in a conventional circuit, while the remainder of the layer would consist of areas
destined to be etched away by acid.

The next step is to reduce the size of the drawing and to multiply it photographically.
The pattern of the layer is thus repeated many times, like the design on a piece of wallpaper.
The multiplied and reduced drawing is then focused through a reversed microscope onto
the surface to be etched.

Successive layers are built up by evaporating or depositing thin films of the appropriate
substances onto the surface of a silicon or germanium wafer. If the layer being made is to be
conducting, the surface would consist of an extremely thin layer of copper, covered with a
photosensitive layer called a “photoresist”. On those portions of the surface receiving light
from the pattern, the photoresist becomes insoluble, while on those areas not receiving
light, the photoresist can be washed away.

The surface is then etched with acid, which removes the copper from those areas not
protected by photoresist. Each successive layer of a wafer is made in this way, and finally
the wafer is cut into tiny “chips”, each of which corresponds to one unit of the wallpaper-
like pattern.

Although the area of a chip may be much smaller than a square centimeter, the chip
can contain an extremely complex circuit. A typical programmable minicomputer or
“microprocessor”, manufactured during the 1970’s, could have 30,000 circuit elements, all
of which were contained on a single chip. By 1986, more than a million transistors were
being placed on a single chip.

As a result of miniaturization, the speed of computers rose steadily. In 1960, the fastest
computers could perform a hundred thousand elementary operations in a second. By 1970,
the fastest computers took less than a second to perform a million such operations. In 1987,
a computer called GF11 was designed to perform 11 billion floating-point operations (flops)
per second.

GF11 (Gigaflop 11) is a scientific parallel-processing machine constructed by IBM.
Approximately ten floating-point operations are needed for each machine instruction. Thus
GF11 runs at the rate of approximately a thousand million instructions per second (1,100
MIPS). The high speed achieved by parallel-processing machines results from dividing a job
into many sub-jobs on which a large number of processing units can work simultaneously.
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Computer memories have also undergone a remarkable development. In 1987, the
magnetic disc memories being produced could store 20 million bits of information per
square inch; and even higher densities could be achieved by optical storage devices. (A
“bit” is the unit of information. For example, the number 25, written in the binary system,
is 11001. To specify this 5-digit binary number requires 5 bits of information. To specify
an n-digit binary number requires n bits of information. Eight bits make a “byte”.)

In the 1970’s and 1980’s, computer networks were set up linking machines in various
parts of the world. It became possible (for example) for a scientist in Europe to perform
a calculation interactively on a computer in the United States just as though the distant
machine were in the same room; and two or more computers could be linked for perform-
ing large calculations. It also became possible to exchange programs, data, letters and
manuscripts very rapidly through the computer networks.

7.10 Moore’s law

In 1965, only four years after the first integrated circuits had been produced, Dr. Gordon
E. Moore, one of the founders of Intel, made a famous prediction which has come to be
known as “Moore’s Law”. He predicted that the number of transistors per integrated
circuit would double every two years, and that this trend would continue through 1975. In
fact, the general trend predicted by Moore has continued for a much longer time. Although
the number of transistors per unit area has not continued to double every two years, the
logic density (bits per unit area) has done so, and thus a modified version of Moore’s law
still holds today. How much longer the trend can continue remains to be seen. Physical
limits to miniaturization of transistors of the present type will soon be reached; but there
is hope that further miniaturization can be achieved through “quantum dot” technology,
molecular switches, and autoassembly.

A typical programmable minicomputer or “microprocessor”, manufactured in the 1970’s,
could have 30,000 circuit elements, all of which were contained on a single chip. By 1989,
more than a million transistors were being placed on a single chip; and by 2000, the number
reached 42,000,000.

As a result of miniaturization and parallelization, the speed of computers rose expo-
nentially. In 1960, the fastest computers could perform a hundred thousand elementary
operations in a second. By 1970, the fastest computers took less than a second to per-
form a million such operations. In 1987, a massively parallel computer, with 566 parallel
processors, called GF1l was designed to perform 11 billion floating-point operations per
second (flops). By 2002 the fastest computer performed 40 at teraflops, making use of
5120 parallel CPU’s.

Computer disk storage has also undergone a remarkable development. In 1987, the
magnetic disk storage being produced could store 20 million bits of information per square
inch; and even higher densities could be achieved by optical storage devices. Storage
density has until followed a law similar to Moore’s law.

In the 1970’s and 1980’s, computer networks were set up linking machines in various



300 A HISTORY OF THE EARTH

LEFT

o

e |

[
i

Figure 7.17: Gordon E. Moore (born 1929), a founder of Intel and the author
of Moore’s Law. In 1965 he predicted that the number of components in
integrated circuits would double every year for the next 10 years”. In 1975 he
predicted the this doubling would continue, but revised the doubling rate to

“every two years. Astonishingly, Moore’s Law has held much longer than he,
or anyone else, anticipated.
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Moore’s Law — The number of transistors on integrated circuit chips (1971-2016)
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. M
‘This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

strongly linked to Moore's law
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Figure 7.18: Amazingly, Moore’s Law has held much longer than he, or anyone
else, anticipated. Perhaps quantum dot technologies can extend its validity

even longer.
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Figure 7.19: A logarithmic plot of the increase in PC hard-drive capacity in
gigabytes. An extrapolation of the rate of increase predicts that the individual
capacity of a commercially available PC will reach 10,000 gigabytes by 2015, i.e.
10,000,000,000,000 bytes. (After Hankwang and Rentar, Wikimedia Commons)
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parts of the world. It became possible (for example) for a scientist in Europe to perform
a calculation interactively on a computer in the United States just as though the distant
machine were in the same room; and two or more computers could be linked for perform-
ing large calculations. It also became possible to exchange programs, data, letters and
manuscripts very rapidly through the computer networks.

The exchange of large quantities of information through computer networks was made
easier by the introduction of fiber optics cables. By 1986, 250,000 miles of such cables had
been installed in the United States. If a ray of light, propagating in a medium with a large
refractive index, strikes the surface of the medium at a grazing angle, then the ray undergoes
total internal reflection. This phenomenon is utilized in fiber optics: A light signal can
propagate through a long, hairlike glass fiber, following the bends of the fiber without
losing intensity because of total internal reflection. However, before fiber optics could be
used for information transmission over long distances, a technological breakthrough in glass
manufacture was needed, since the clearest glass available in 1940 was opaque in lengths
more than 10 m. Through studies of the microscopic properties of glasses, the problem of
absorption was overcome. By 1987, devices were being manufactured commercially that
were capable of transmitting information through fiber-optic cables at the rate of 1.7 billion
bits per second.

7.11 Automation

During the last three decades, the cost of computing has decreased exponentially by be-
tween twenty and thirty percent per year. Meanwhile, the computer industry has grown
exponentially by twenty percent per year (faster than any other industry). The astonish-
ing speed of this development has been matched by the speed with which computers have
become part of the fabric of science, engineering, industry, commerce, communications,
transport, publishing, education and daily life in the industrialized parts of the world.

The speed, power and accuracy of computers has revolutionized many branches of
science. For example, before the era of computers, the determination of a simple molecular
structure by the analysis of X-ray diffraction data often took years of laborious calculation;
and complicated structures were completely out of reach. In 1949, however, Dorothy
Crowfoot Hodgkin used an electronic computer to work out the structure of penicillin from
X-ray data. This was the first application of a computer to a biochemical problem; and it
was followed by the analysis of progressively larger and more complex structures.

Proteins, DNA, and finally even the detailed structures of viruses were studied through
the application of computers in crystallography. The enormous amount of data needed for
such studies was gathered automatically by computer-controlled diffractometers; and the
final results were stored in magnetic-tape data banks, available to users through computer
networks.

The application of quantum theory to chemical problems is another field of science
which owes its development to computers. When FErwin Schrodinger wrote down his
wave equation in 1926, it became possible, in principle, to calculate most of the physical
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and chemical properties of matter. However, the solutions to the Schrédinger equation
for many-particle systems can only be found approximately; and before the advent of
computers, even approximate solutions could not be found, except for the simplest systems.

When high-speed electronic digital computers became widely available in the 1960’s, it
suddenly became possible to obtain solutions to the Schrodinger equation for systems of
chemical and even biochemical interest. Quantum chemistry (pioneered by such men  as
J.C. Slater, R.S. Mullikin, D.R. Hartree, V. Fock, J.H. Van Vleck, L. Pauling, E.B. Wilson,
P.O. Lowdin, E. Clementi, C.J. Ballhausen and others) developed into a rapidly-growing
field, as did solid state physics. Through the use of computers, it became possible to
design new materials with desired chemical, mechanical, electrical or magnetic properties.
Applying computers to the analysis of reactive scattering experiments, D. Herschbach,
J. Polanyi and Y. Lee were able to achieve an understanding of the dynamics of chemical
reactions.

The successes of quantum chemistry led Albert Szent-Gyorgyi, A. and B. Pullman, H.
Scheraga and others to pioneer the fields of quantum biochemistry and molecular dynam-
ics. Computer programs for drug design were developed, as well as molecular-dynamics
programs which allowed the conformations of proteins to be calculated from a knowledge of
their amino acid sequences. Studies in quantum biochemistry have yielded insights into the
mechanisms of enzyme action, photosynthesis, active transport of ions across membranes,
and other biochemical processes.

In medicine, computers began to be used for monitoring the vital signs of critically ill
patients, for organizing the information flow within hospitals, for storing patients’ records,
for literature searches, and even for differential diagnosis of diseases.

The University of Pennsylvania has developed a diagnostic program called INTERNIST-
1, with a knowledge of 577 diseases and their interrelations, as well as 4,100 signs, symp-
toms and patient characteristics. This program was shown to perform almost as well as
an academic physician in diagnosing difficult cases. QMR (Quick Medical Reference), a
microcomputer adaptation of INTERNIST-1, incorporates the diagnostic functions of the
earlier program, and also offers an electronic textbook mode.

Beginning in the 1960’s, computers played an increasingly important role in engineering
and industry. For example, in the 1960’s, Rolls Royce Ltd. began to use computers not
only to design the optimal shape of turbine blades for aircraft engines, but also to control
the precision milling machines which made the blades. In this type of computer-assisted
design and manufacture, no drawings were required. Furthermore, it became possible for
an industry requiring a part from a subcontractor to send the machine-control instructions
for its fabrication through the computer network to the subcontractor, instead of sending
drawings of the part.

In addition to computer-controlled machine tools, robots were also introduced. They
were often used for hazardous or monotonous jobs, such as spray-painting automobiles; and
they could be programmed by going through the job once manually in the programming
mode. By 1987, the population of robots in the United States was between 5,000 and 7,000,
while in Japan, the Industrial Robot Association reported a robot population of 80,000.

Chemical industries began to use sophisticated computer programs to control and to
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optimize the operations of their plants. In such control systems, sensors reported cur-
rent temperatures, pressures, flow rates, etc. to the computer, which then employed a
mathematical model of the plant to calculate the adjustments needed to achieve optimum
operating conditions.

Not only industry, but also commerce, felt the effects of computerization during the
postwar period. Commerce is an information-intensive activity; and in fact some of the
crucial steps in the development of information-handling technology developed because of
the demands of commerce: The first writing evolved from records of commercial trans-
actions kept on clay tablets in the Middle East; and automatic business machines, using
punched cards, paved the way for the development of the first programmable computers.

Computerization has affected wholesaling, warehousing, retailing, banking, stockmarket
transactions, transportation of goods - in fact, all aspects of commerce. In wholesaling,
electronic data is exchanged between companies by means of computer networks, allowing
order-processing to be handled automatically; and similarly, electronic data on prices is
transmitted to buyers.

The key to automatic order-processing in wholesaling was standardization. In the
United States, the Food Marketing Institute, the Grocery Manufacturers of America, and
several other trade organizations, established the Uniform Communications System (UCS)
for the grocery industry. This system specifies a standard format for data on products,
prices and orders.

Automatic warehouse systems were designed as early as 1958. In such systems, the
goods to be stored are placed on pallets (portable platforms), which are stacked automat-
ically in aisles of storage cubicles. A computer records the position of each item for later
automatic retrieval.

In retailing, just as in wholesaling, standardization proved to be the key requirement for
automation. Items sold in supermarkets in most industrialized countries are now labeled
with a standard system of machine-readable thick and thin bars known as the Universal
Product Code (UPC). The left-hand digits of the code specify the manufacturer or packer
of the item, while the right-hand set of digits specify the nature of the item. A final digit
is included as a check, to make sure that the others were read correctly. This last digit
(called a modulo check digit) is the smallest number which yields a multiple of ten when
added to the sum of the previous digits.

When a customer goes through a check-out line, the clerk passes the purchased items
over a laser beam and photocell, thus reading the UPC code into a small embedded com-
puter or microprocessor at the checkout counter, which adds the items to the customer’s
bill. The microprocessor also sends the information to a central computer and inventory
data base. When stocks of an item become low, the central computer generates a re-
placement order. The financial book-keeping for the retailing operation is also carried out
automatically by the central computer.

In many places, a customer passing through the checkout counter of a supermarket is
able to pay for his or her purchases by means of a plastic card with a magnetic, machine-
readable identification number. The amount of the purchase is then transmitted through
a computer network and deducted automatically from the customer’s bank account. If the
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customer pays by check, the supermarket clerk may use a special terminal to determine
whether a check written by the customer has ever “bounced”.

Most checks are identified by a set of numbers written in the Magnetic-Ink Character
Recognition (MICR) system. In 1958, standards for the MICR system were established,
and by 1963, 85 percent of all checks written in the United States were identified by MICR
numbers. By 1968, almost all banks had adopted this system; and thus the administration
of checking accounts was automated, as well as the complicated process by which a check,
deposited anywhere in the world, returns to the payers bank.

Container ships were introduced in the late 1950’s, and since that time, container sys-
tems have increased cargo-handling speeds in ports by at least an order of magnitude.
Computer networks contributed greatly to the growth of the container system of trans-
portation by keeping track of the position, ownership and contents of the containers.

In transportation, just as in wholesaling and retailing, standardization proved to be
a necessary requirement for automation. Containers of a standard size and shape could
be loaded and unloaded at ports by specialized tractors and cranes which required only
a very small staff of operators. Standard formats for computerized manifests, control
documents, and documents for billing and payment, were instituted by the Transportation
Data Coordinating Committee, a non-profit organization supported by dues from shipping
firms.

In the industrialized parts of the world, almost every type of work has been made
more efficient by computerization and automation. Even artists, musicians, architects
and authors find themselves making increasing use of computers: Advanced computing
systems, using specialized graphics chips, speed the work of architects and film animators.
The author’s traditional typewriter has been replaced by a word-processor, the composer’s
piano by a music synthesizer.

In the Industrial Revolution of the 18th and 19th centuries, muscles were replaced
by machines. Computerization represents a Second Industrial Revolution: Machines have
begun to perform not only tasks which once required human muscles, but also tasks which
formerly required human intelligence.

In industrial societies, the mechanization of agriculture has very much reduced the
fraction of the population living on farms. For example, in the United States, between
1820 and 1980, the fraction of workers engaged in agriculture fell from 72 percent to 3.1
percent. There are signs that computerization and automation will similarly reduce the
number of workers needed in industry and commerce.

Computerization is so recent that, at present, we can only see the beginnings of its
impact; but when the Second Industrial Revolution is complete, how will it affect society?
When our children finish their education, will they face technological unemployment?

The initial stages of the First Industrial Revolution produced much suffering, because
labor was regarded as a commodity to be bought and sold according to the laws of supply
and demand, with almost no consideration for the needs of the workers. Will we repeat
this mistake? Or will society learn from its earlier experience, and use the technology of
automation to achieve widely-shared human happiness?

The Nobel-laureate economist, Wassily W. Leontief, has made the following comment
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on the problem of technological unemployment:

“Adam and Eve enjoyed, before they were expelled from Paradise, a high standard of
living without working. After their expulsion, they and their successors were condemned
to eke out a miserable existence, working from dawn to dusk. The history of technological
progress over the last 200 years is essentially the story of the human species working its
way slowly and steadily back into Paradise. What would happen, however, if we suddenly
found ourselves in it? With all goods and services provided without work, no one would
be gainfully employed. Being unemployed means receiving no wages. As a result, until ap-
propriate new income policies were formulated to fit the changed technological conditions,
everyone would starve in Paradise.”

To say the same thing in a slightly different way: consider what will happen when
a factory which now employs a thousand workers introduces microprocessor-controlled
industrial robots and reduces its work force to only fifty. What will the nine hundred
and fifty redundant workers do? They will not be able to find jobs elsewhere in industry,
commerce or agriculture, because all over the economic landscape, the scene will be the
same.

There will still be much socially useful work to be done - for example, taking care of
elderly people, beautifying the cities, starting youth centers, planting forests, cleaning up
pollution, building schools in developing countries, and so on. These socially beneficial
goals are not commercially “profitable”. They are rather the sort of projects which gov-
ernments sometimes support if they have the funds for it. However, the money needed to
usefully employ the nine hundred and fifty workers will not be in the hands of the govern-
ment. It will be in the hands of the factory owner who has just automated his production
line.

In order to make the economic system function again, either the factory owner will have
to be persuaded to support socially beneficial but commercially unprofitable projects, or
else an appreciable fraction of his profits will have to be transferred to the government,
which will then be able to constructively re-employ the redundant workers.

The future problems of automation and technological unemployment may force us to
rethink some of our economic ideas. It is possible that helping young people to make a
smooth transition from education to secure jobs will become one of the important respon-
sibilities of governments, even in countries whose economies are based on free enterprise.
If such a change does take place in the future, while at the same time socialistic countries
are adopting a few of the better features of free enterprise, then one can hope that the
world will become less sharply divided by contrasting economic systems.

The history of the Internet and World Wide Web

The history of the Internet began in 1961, when Leonard Kleinrock, a student at MIT,
submitted a proposal for Ph.D. thesis entitled “Information Flow in Large Communication
Nets”. In his statement of the problem, Kleinrock wrote: “The nets under consideration
consist of nodes, connected to each other by links. The nodes receive, sort, store, and
transmit messages that enter and leave via the links. The links consist of one-way chan-
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nels, with fixed capacities. Among the typical systems which fit this description are the
Post Office System, telegraph systems, and satellite communication systems.” Kleinrock’s
theoretical treatment of package switching systems anticipated the construction of com-
puter networks which would function on a principle analogous to a post office rather than
a telephone exchange: In a telephone system, there is a direct connection between the
sender and receiver of information. But in a package switching system, there is no such
connection - only the addresses of the sender and receiver on the package of information,
which makes its way from node to node until it reaches its destination.

Further contributions to the concept of package switching systems and distributed com-
munications networks were made by J.C.R. Licklider and W. Clark of MIT in 1962, and
by Paul Baran of the RAND corporation in 1964. Licklider visualized what he called a
“Galactic Network”, a globally interconnected network of computers which would allow
social interactions and interchange of data and software throughout the world. The dis-
tributed computer communication network proposed by Baran was motivated by the desire
to have a communication system that could survive a nuclear war. The Cold War had also
provoked the foundation (in 1957) of the Advanced Research Projects Agency (ARPA) by
the U.S. government as a response to the successful Russian satellite “Sputnik”.

In 1969, a 4-node network was tested by ARPA. It connected computers at the Uni-
versity of California divisions at Los Angeles and Santa Barbara with computers at the
Stanford Research Institute and the University of Utah. Describing this event, Leonard
Kleinrock said in an interview: “We set up a telephone connection between us and the
guys at SRI. We typed the L and we asked on the phone ‘Do you see the L?” ‘Yes we see
the L’ came the response. We typed the 0 and we asked ‘Do you see the 07" ‘Yes we see
the O.” Then we typed the G and the system crashed.” The ARPANET (with 40 nodes)
performed much better in 1972 at the Washington Hilton Hotel where the participants at
a Conference on Computer Communications were invited to test it.

Although the creators of ARPANET visualized it as being used for long- distance
computations involving several computers, they soon discovered that social interactions
over the Internet would become equally important if not more so. An electronic mail
system was introduced in the early 1970’s, and in 1976 Queen Elizabeth II of the United
Kingdom became one of the increasing number of e-mail users.

In September, 1973, Robert F. Kahn and Vinton Cerf presented the basic ideas of
the Internet at a meeting of the International Network Working Group at the University
Sussex in Brighton, England. Among these principles was the rule that the networks to
be connected should not be changed internally. Another rule was that if a packet did not
arrive at its destination, it would be retransmitted from its original source. No information
was to be retained by the gateways used to connect networks; and finally there was to be
no global control of the Internet at the operations level.

Computer networks devoted to academic applications were introduced in the 1970’s
and 1980’s, both in England, the United States and Japan. The Joint Academic Network
(JANET) in the U.K. had its counterpart in the National Science Foundation’s network
(NSFNET) in America and Japan’s JUNET (Japan Unix Network). Internet traffic is
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Table 7.1: Historical total world Internet traffic (after Cisco Visual Networking
Index Forecast). 1 terrabyte =1,000,000,000,000 bytes

year

1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010

terabytes per month

1
20

170

1,800
5,000
11,000
26,000
75,000
175,000
358,000
631,000
1,267,000
2,055,000
3,339,000
5,219,000
7,639,000
10,676,000
14,984,000

O =N =

approximately doubling each yearE] and it is about to overtake voice communication in the

volume of information transferred.

In March, 2011, there were more than two billion Internet users in the world. In North
America they amounted to 78.3 % of the total population, in Europe 58.3 % and worldwide,
30.2 %. Another index that can give us an impression of the rate of growth of digital data
generation and exchange is the “digital universe”, which is defined to be the total volume of
digital information that human information technology creates and duplicates in a year. In
2011 the digital universe reached 1.2 zettabytes, and it is projected to quadruple by 2015.
A zettabyte is 102! bytes, an almost unimaginable number, equivalent to the information
contained in a thousand trillion books, enough books to make a pile that would stretch

twenty billion kilometers.

4 In the period 1995-1996, the rate of increase was even faster - a doubling every four months
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Self-reinforcing information accumulation

Humans have been living on the earth for roughly two million years (more or less, depending
on where one draws the line between our human and prehuman ancestors, Table 6.1).
During almost all of this,time, our ancestors lived by hunting and food-gathering. They
were not at all numerous, and did not stand out conspicuously from other animals. Then,
suddenly, during the brief space of ten thousand years, our species exploded in numbers
from a few million to seven billion (Figure 6.1), populating all parts of the earth, and even
setting foot on the moon. This population explosion, which is still going on, has been the
result of dramatic cultural changes. Genetically we are almost identical with our hunter-
gatherer ancestors, who lived ten thousand years ago, but cultural evolution has changed
our way of life beyond recognition.

Beginning with the development of speech, human cultural evolution began to accel-
erate. It started to move faster with the agricultural revolution, and faster still with the
invention of writing and printing. Finally, modern science has accelerated the rate of social
and cultural change to a completely unprecedented speed.

The growth of modern science is accelerating because knowledge feeds on itself. A new
idea or a new development may lead to several other innovations, which can in turn start
an avalanche of change. For example, the quantum theory of atomic structure led to the in-
vention of transistors, which made high-speed digital computers possible. Computers have
not only produced further developments in quantum theory; they have also revolutionized
many other fields.

The self-reinforcing accumulation of knowledge - the information explosion - which
characterizes modern human society is reflected not only in an explosively-growing global
population, but also in the number of scientific articles published, which doubles roughly
every ten years. Another example is Moore’s law - the doubling of the information density
of integrated circuits every two years. Yet another example is the explosive growth of
Internet traffic shown in Table 7.1.

The Internet itself is the culmination of a trend towards increasing societal information
exchange - the formation of a collective human consciousness. This collective consciousness
preserves the observations of millions of eyes, the experiments of millions of hands, the
thoughts of millions of brains; and it does not die when the individual dies.

7.12 Neural networks

Physiologists have begun to make use of insights derived from computer design in their
efforts to understand the mechanism of the brain; and computer designers are beginning
to construct computers modeled after neural networks. We may soon see the development
of computers capable of learning complex ideas, generalization, value judgements, artistic
creativity, and much else that was once thought to be uniquely characteristic of the human
mind. Efforts to design such computers will undoubtedly give us a better understanding
of the way in which the brain performs its astonishing functions.
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Much of our understanding of the nervous systems of higher animals is due to the
Spanish microscopist, Ramén y Cajal, and to the English physiologists, Alan Hodgkin and
Andrew  Huxley. Cajal’s work, which has been confirmed and elaborated by modern
electron microscopy, showed that the central nervous system is a network of nerve cells
(neurons) and threadlike fibers growing from them. Each neuron has many input fibers
(dendrites), and one output fiber (the axon), which may have several branches.

It is possible the computers of the future will have pattern-recognition and learning
abilities derived from architecture inspired by our understanding of the synapse, by Young’s
model, or by other biological models. However, pattern recognition and learning can also be
achieved by programming, using computers of conventional architecture. Programs already
exist which allow computers to understand both handwriting and human speech; and a
recent chess-playing program was able to learn by studying a large number of championship
games. Having optimized its parameters by means of this learning experience, the chess-
playing program was able to win against grand masters!

Like nuclear physics and genesplicing, artificial intelligence presents a challenge: Will
society use its new powers wisely and humanely? The computer technology of the future
can liberate us from dull and repetitive work, and allow us to use our energies creatively;
or it can produce unemployment and misery, depending on how we organize our society.
Which will we choose?

The merging of information technology and biotechnology

Information technology and biology are today the two most rapidly developing fields of
science. Interestingly, these two fields seem to be merging, each gaining inspiration and help
from the other. For example, computer scientists designing both hardware and software
are gaining inspiration from physiological studies of the mechanism of the brain; and
conversely, neurophysiologists are aided by insights from the field of artificial intelligence.
Designers of integrated circuits wish to prolong the period of validity of Moore’s law; but
they are rapidly approaching physical barriers which will set limits to the miniaturization
of conventional transistors and integrated circuits. They gain inspiration from biology,
where the language of molecular complementarity and the principle of autoassembly seem
to offer hope that molecular switches and self-assembled integrated circuits may one day
be constructed.

Geneticists, molecular biologists, biochemists and crystallographers have now obtained
so much information about the amino acid sequences and structures of proteins and about
the nucleotide sequences in genomes that the full power of modern information technology
is needed to store and to analyze this information. Computer scientists, for their part,
turn to evolutionary genetics for new and radical methods of developing both software and
hardware - genetic algorithms and simulated evolution.
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Self-assembly of supramolecular structures; Nanoscience

One of the best studied examples of autoassembly through the mechanism of molecular
complementarity is the tobacco mosaic virus. The assembled virus has a cylindrical form
about 300 nm long (1 nm = 1 nanometer = 10~ meters = 10 Angstroms), with a width of 18
nm. The cylindrically shaped virus is formed from about 2000 identical protein molecules.
These form a package around an RNA molecule with a length of approximately 6400
nucleotides. The tobacco mosaic virus can be decomposed into its constituent molecules
in vitro, and the protein and RNA can be separated and put into separate bottles.

If, at a later time, one mixes the protein and RNA molecules together in solution, they
spontaneously assemble themselves into new infective tobacco mosaic virus particles. The
mechanism for this spontaneous autoassembly is a random motion of the molecules through
the solvent until they approach each other in such a way that a fit is formed. When two
molecules fit closely together, with their physical contours matching, and with complemen-
tary patterns of excess charge also matching, the Gibbs free energy of the total system is
minimized. Thus the self-assembly of matching components proceeds spontaneously, just
as every other chemical reaction proceeds spontaneously when the difference in Gibbs free
energy between the products and reactants is negative. The process of autoassembly is
analogous to crystallization, except that the structure formed is more complex than an
ordinary crystal.

A second very well-studied example of biological autoassembly is the spontaneous for-
mation of bilayer membranes when phospholipid molecules are shaken together in water.
Each phospholipid molecule has a small polar (hydrophilic) head, and a long nonpolar (hy-
drophobic) tail. The polar head is hydrophilic - water-loving - because it has large excess
charges with which water can form hydrogen bonds. By contrast, the non-polar tail of a
phospholipid molecule has no appreciable excess charges. The tail is hydrophobic - it hates
water - because to fit into the water structure it has to break many hydrogen bonds to
make a hole for itself, but it cannot pay for these broken bonds by forming new hydrogen
bonds with water.

There is a special configuration of the system of water and phospholipid molecules
which has a very low Gibbs free energy - the lipid bilayer. In this configuration, all the
hydrophilic polar heads are in contact with water, while the hydrophobic nonpolar tails
are in the interior of the double membrane, away from the water, and in close contact
with each other, thus maximizing their mutual Van der Waals attractions. (The basic
structure of biological membranes is the lipid bilayer just described, but there are also
other components, such as membrane-bound proteins, caveolae, and ion pores.)

The mechanism of self-organization of supramolecular structures is one of the most
important universal mechanisms of biology. Chemical reactions take place spontaneously
when the change in Gibbs free energy produced by the reaction is negative, i.e., chem-
ical reactions take place in such a direction that the entropy of the universe increases.
When spontaneous chemical reactions take place, the universe moves from a less probable
configuration to a more probable one. The same principle controls the motion of larger
systems, where molecules arrange themselves spontaneously to form supramolecular struc-



312 A HISTORY OF THE EARTH

tures. Self-assembling collections of molecules move in such a way as to minimize their
Gibbs free energy, thus maximizing the entropy of the universe.

Biological structures of all kinds are formed spontaneously from their components be-
cause assembly information is written onto their joining surfaces in the form of complemen-
tary surface contours and complementary patterns of excess Chargdﬂ Matching pieces fit
together, and the Gibbs free energy of the system is minimized. Virtually every structure
observed in biology is formed in this way - by a process analogous to crystallization, except
that biological structures can be far more complex than ordinary crystals.

Researchers in microelectronics, inspired by the self-assembly of biological structures,
dream of using the same principles to generate self-organizing integrated circuits with
features so small as to approach molecular dimensions. The speed of a computing operation
is limited by the time that it takes an electrical signal (moving at approximately the speed
of light) to traverse a processing unit. The desire to produce ever greater computation
speeds as well as ever greater memory densities, motivates the computer industry’s drive
towards ultraminiaturization.

Currently the fineness of detail in integrated circuits is limited by diffraction effects
caused by the finite wavelength of the light used to project an image of the circuit onto a
layer of photoresist covering the chip where the circuit is being built up. For this reason,
there is now very active research on photolithography using light sources with extremely
short wavelengths, in the deep ultraviolet, or even X-ray sources, synchrotron radiation,
or electron beams. The aim of this research is to produce integrated circuits whose feature
size is in the nanometer range - smaller than 100 nm. In addition to these efforts to
create nanocircuits by “top down” methods, intensive research is also being conducted on
“bottom up” synthesis, using principles inspired by biological self-assembly. The hope to
make use of “the spontaneous association of molecules, under equilibrium conditions, into
stable, structurally well-defined aggregates, joined by non-covalent bonds”[

The Nobel Laureate Belgian chemist J.-M. Lehn pioneered the field of supramolecular
chemistry by showing that it is possible to build nanoscale structures of his own design.
Lehn and his coworkers at the University of Strasbourg used positively-charged metal ions
as a kind of glue to join larger structural units at points where the large units exhibited
excess negative charges. Lehn predicts that the supramolecular chemistry of the future
will follow the same principles of self-organization which underlie the growth of biological
structures, but with a greatly expanded repertory, making use of elements (such as silicon)
that are not common in carbon-based biological systems.

Other workers in nanotechnology have concentrated on the self-assembly of two-dimensional
structures at water-air interfaces. For example, Thomas Bjgrnholm, working at the Uni-
versity of Copenhagen, has shown that a nanoscale wire can be assembled spontaneously at
a water-air interface, using metal atoms complexed with DNA and a DNA template. The
use of a two-dimensional template to reproduce a nanostructure can be thought of as “mi-
croprinting”. One can also think of self-assembly at surfaces as the two-dimensional version

5 Patterns of reactive or polarizable groups also play a role.
6 G.M. Whiteside et al., Science, 254, 1312-1314, (1991).
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of the one-dimensional copying process by which a new DNA or RNA strand assembles
itself spontaneously, guided by the complementary strand.

In 1981, Gerd Binning and Heinrich Rohrer of IBM’s Research Center in Switzerland
announced their invention of the scanning tunneling microscope. The new microscope’s
resolution was so great that single atoms could be observed. The scanning tunneling
microscope consists of a supersharp conducting tip, which is brought near enough to a
surface so that quantum mechanical tunneling of electrons can take place between tip and
surface when a small voltage is applied. The distance between the supersharp tip and the
surface is controlled by means of a piezoelectric crystal. As the tip is moved along the
surface, its distance from the surface (and hence the tunneling current) is kept constant
by applying a voltage to the piezoelectric crystal, and this voltage as a function of position
gives an image of the surface.

Variations on the scanning tunneling microscope allow single atoms to be deposited
or manipulated on a surface. Thus there is a hope that nanoscale circuit templates can
be constructed by direct manipulation of atoms and molecules, and that the circuits can
afterwards be reproduced using autoassembly mechanisms.

The scanning tunneling microscope makes use of a quantum mechanical effect: Elec-
trons exhibit wavelike properties, and can tunnel small distances into regions of negative
kinetic energy - regions which would be forbidden to them by classical mechanics. In gen-
eral it is true that for circuit elements with feature sizes in the nanometer range, quantum
effects become important. For conventional integrated circuits, the quantum effects which
are associated with this size-range would be a nuisance, but workers in nanotechnology
hope to design integrated circuits which specifically make use of these quantum effects.

Molecular switches; bacteriorhodopsin

The purple, salt-loving archaebacterium Halobacterium halobium (recently renamed Halobac-
terium salinarum) possesses one of the simplest structures that is able to perform photo-
synthesis. The purple membrane subtraction of this bacterium’s cytoplasmic membrane
contains only two kinds of molecules - lipids and bacteriorhodopsin. Nevertheless, this
simple structure is able to trap the energy of a photon from the sun and to convert it into
chemical energy.

The remarkable purple membrane of Halobacterium has been studied in detail by Walter
Stoeckenius, D. Osterhel], Lajos Keszthelyi and others.

It can be decomposed into its constituent molecules. The lipids from the membrane
and the bacteriorhodopsin can be separated from each other and put into different bottles.
At a later time, the two bottles can be taken from the laboratory shelf, and their contents
can be shaken together in water. The result is the spontaneous formation of tiny vesicles
of purple membrane.

" D. Osterhelt and Walter Stoeckenius, Nature New Biol. 233, 149-152 (1971); D. Osterhelt et al.,
Quart. Rev. Biophys. 24, 425-478 (1991); W. Stoeckenius and R. Bogomolni, Ann. Rev. Biochem. 52,
587-616 (1982).
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In the self-organized two-component vesicles, the membrane-bound protein bacteri-
orhodopsin is always correctly oriented, just as it would be in the purple membrane of a
living Halobacterium. When the vesicles are illuminated, bacteriorhodopsin absorbs H*
ions from the water on the inside, and releases them outside.

Bacteriorhodopsin consists of a chain of 224 amino acids, linked to the retinal chro-
mophore. The amino acids are arranged in 7 helical segments, each of which spans the
purple membrane, and these are joined on the membrane surface by short nonhelical seg-
ments of the chain. The chromophore is in the middle of the membrane, surrounded by
a-helical segments. When the chromophore is illuminated, its color is temporarily bleached,
and it undergoes a cis-trans isomerization which disrupts the hydrogen-bonding network of
the protein. The result is that a proton is released on the outside of the membrane. Later,
a proton is absorbed from the water in the interior of the membrane vesicle, the hydrogen-
bonding system of the protein is reestablished, and both the protein and the chromophore
return to their original conformations. In this way, bacteriorhodopsin functions as a proton
pump. It uses the energy of photons to transport H' ions across the membrane, from the
inside to the outside, against the electrochemical gradient. In the living Halobacterium,
this HT concentration difference would be used to drive the synthesis of the high-energy
phosphate bond of adenosine triphosphate (ATP), the inward passage of H" through other
parts of the cytoplasmic membrane being coupled to the reaction ADP + P, — ATP by
membrane-bound reversible ATPase.

Bacteriorhodopsin is interesting as a component of one of the simplest known photo-
synthetic systems, and because of its possible relationship to the evolution of the eye. In
addition, researchers like Lajos Keszthelyi at the Institute of Biophysics of the Hungarian
Academy of Sciences in Szeged are excited about the possible use of bacteriorhodopsin
in optical computer memorief} Arrays of oriented and partially dehydrated bacteri-
orhodopsin molecules in a plastic matrix can be used to construct both 2-dimensional
and 3-dimensional optical memories using the reversible color changes of the molecule. J.
Chen and coworker&ﬂ have recently constructed a prototype 3-dimensional optical memory
by orienting the proteins and afterwards polymerizing the solvent into a solid polyacry-
lamide matrix. Bacteriorhodopsin has extraordinary stability, and can tolerate as many as
a million optical switching operations without damage.

Neural networks, biological and artificial

In 1943, W. McCulloch and W. Pitts published a paper entitled A Logical Calculus of the
Ideas Immanent in Nervous Activity. In this pioneering paper, they proposed the idea of
a Threshold Logic Unit (TLU), which they visualized not only as a model of the way in
which neurons function in the brain but also as a possible subunit for artificial systems
which might be constructed to perform learning and pattern-recognition tasks. Problems
involving learning, generalization, pattern recognition and noisy data are easily handled

8 A. Der and L. Keszthelyi, editors, Bioelectronic Applications of Photochromic Pigments, IOS Press,
Amsterdam, Netherlands, (2001).
9 J. Chen et al., Biosystems 35, 145-151 (1995).
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by the brains of humans and animals, but computers of the conventional von Neumann
type find such tasks especially difficult.

Conventional computers consist of a memory and one or more central processing units
(CPUs). Data and instructions are repeatedly transferred from the memory to the CPUs,
where the data is processed and returned to the memory. The repeated performance
of many such cycles requires a long and detailed program, as well as high-quality data.
Thus conventional computers, despite their great speed and power, lack the robustness,
intuition, learning powers and powers of generalization which characterize biological neural
networks. In the 1950’s, following the suggestions of McCulloch and Pitts, and inspired
by the growing knowledge of brain structure and function which was being gathered by
histologists and neurophysiologists, computer scientists began to construct artificial neural
networks - massively parallel arrays of TLU’s.

The analogy between a TLU and a neuron can be seen by comparing Figure 5.2, which
shows a neuron, with Figure 8.1, which shows a TLU. A neuron is a specialized cell con-
sisting of a cell body (soma) from which an extremely long, tubelike fiber called an azon
grows. The axon is analogous to the output channel of a TLU. From the soma, a number of
slightly shorter, rootlike extensions called dendrites also grow. The dendrites are analogous
to the input channels of a TLU.

In a biological neural network, branches from the axon of a neuron are connected to the
dendrites of many other neurons; and at the points of connection there are small, knoblike
structures called synapses. The “firing” of a neuron sends a wave of depolarization out
along its axon. When the pulselike electrical and chemical disturbance associated with the
wave of depolarization (the action potential) reaches a synapse, where the axon is connected
with another neuron, transmitter molecules are released into the post-synaptic cleft. The
neurotransmitter molecules travel across the post-synaptic cleft to receptors on a dendrite
of the next neuron in the net, where they are bound to receptors. There are many kinds of
neurotransmitter molecules, some of which tend to make the firing of the next neuron more
probable, and others which tend to inhibit its firing. When the neurotransmitter molecules
are bound to the receptors, they cause a change in the dendritic membrane potential, either
increasing or decreasing its polarization. The post-synaptic potentials from the dendrites
are propagated to the soma; and if their sum exceeds a threshold value, the neuron fires.
The subtlety of biological neural networks derives from the fact that there are many kinds
of neurotransmitters and synapses, and from the fact that synapses are modified by their
past history.

Turning to Figure 8.1, we can compare the biological neuron with the Threshold Logic
Unit of McCulloch and Pitts. Like the neuron, the TLU has many input channels. To each
of the N channels there is assigned a weight, wy, wo, ..., wy. The weights can be changed;
and the set of weights gives the TLU its memory and learning capabilities. Modification
of weights in the TLU is analogous to the modification of synapses in a neuron, depending
on their history. In the most simple type of TLU, the input signals are either 0 or 1. These
signals, multiplied by their appropriate weights, are summed, and if the sum exceeds a
threshold value, # the TLU “fires”, i.e. a pulse of voltage is transmitted through the
output channel to the next TLU in the artificial neural network.
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Figure 7.20: A Threshold Logic Unit (TLU) of the type proposed by McCulloch and Pitts.
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Figure 7.21: A perceptron, introduced by Rosenblatt in 1962. The perceptron is similar
to a TLU, but its input is preprocessed by a set of association units (A-units). The A-units
are not trained, but are assigned a fixed Boolean functionality.
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Let us imagine that the input signals, xq, o, ..., x5 can take on the values 0 or 1. The
weighted sum of the input signals will then be given by

N
a= ijxj (7.1)
7j=1

The quantity a, is called the activation. If the activation exceeds the threshold 9, the unit
“fires”, i.e. it produces an output y given by

1 if a>46

Yy = (7.2)
0 if a<@

The decisions taken by a TLU can be given a geometrical interpretation: The input signals
can be thought of as forming the components of a vector, x = 1, xs,..., X, in an N-
dimensional space called pattern space. The weights also form a vector, w = wq, ws, ..., wy,
in the same space. If we write an equation setting the scalar product of these two vectors
equal to some constant,

N
W-XEijsze (7.3)
j=1

then this equation defines a hyperplane in pattern space, called the decision hyperplane.
The decision hyperplane divides pattern space into two parts - (1) input pulse patterns
which will produce firing of the TLU, and (2) patterns which will not cause firing.

The position and orientation of the decision hyperplane can be changed by altering the
weight vector w and/or the threshold #. Therefore it is convenient to put the threshold
and the weights on the same footing by introducing an augmented weight vector,

W:wl,wg,...,wN,H (74)
and an augmented input pattern vector,
X =uw1,x9,..., 2N, —1 (7.5)

In the N+Il-dimensional augmented pattern space, the decision hyperplane now passes
through the origin, and equation (8.3) can be rewritten in the form

N+1
W-X=> W;X;=0 (7.6)

J=1

Those input patterns for which the scalar product W - X is positive or zero will cause the
unit to fire, but if the scalar product is negative, there will be no response.

If we wish to “teach” a TLU to fire when presented with a particular pattern vector X,
we can evaluate its scalar product with the current augmented weight vector W. If this
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scalar product is negative, the TLU will not fire, and therefore we know that the weight
vector needs to be changed. If we replace the weight vector by

W =W ++X (7.7)

where 7 is a small positive number, then the new augmented weight vector W’ will point
in a direction more nearly the same as the direction of X. This change will be a small
step in the direction of making the scalar product positive, i.e. a small step in the right
direction.

Why not take a large step instead of a small one? A small step is best because there
may be a whole class of input patterns to which we would like the TLU to respond by
firing. If we make a large change in weights to help a particular input pattern, it may undo
previous learning with respect to other patterns.

It is also possible to teach a TLU to remain silent when presented with a particular input
pattern vector. To do so we evaluate the augmented scalar product W - X as before, but
now, when we desire silence rather than firing, we wish the scalar product to be negative,
and if it is positive, we know that the weight vector must be changed. In changing the
weight vector, we can again make use of equation (8.7), but now 7 must be a small negative
number rather than a small positive one.

Two sets of input patterns, A and B, are said to be linearly separable if they can be
separated by some decision hyperplane in pattern space. Now suppose that the four sets,
A, B, C, and D, can be separated by two decision hyperplanes. We can then construct a
two-layer network which will identify the class of an input signal belonging to any one of
the sets, as is illustrated in Figure 8.2.

The first layer consists of two TLU’s. The first TLU in this layer is taught to fire if
the input pattern belongs to A or B, and to be silent if the input belongs to C or D. The
second TLU is taught to fire if the input pattern belongs to A or D, and to be silent if
it belongs to B or C. The second layer of the network consists of four output units which
are not taught, but which are assigned a fixed Boolean functionality. The first output unit
fires if the signals from the first layer are given by the vector y = {0,0} (class A); the
second fires if y = {0,1} (class B), the third if y = {1,0} (class C), and the fourth if
y = {1,1} (class D). Thus the simple two-layer network shown in Figure 8.2 functions as a
classifier. The output units in the second layer are analogous to the “grandmother’s face
cells” whose existence in the visual cortex is postulated by neurophysiologists. These cells
will fire if and only if the retina is stimulated with a particular class of patterns.

This very brief glance at artificial neural networks does not do justice to the high degree
of sophistication which network architecture and training algorithms have achieved during
the last two decades. However, the suggestions for further reading at the end of this chapter
may help to give the reader an impression of the wide range of problems to which these
networks are now being applied.

Besides being useful for computations requiring pattern recognition, learning, general-
ization, intuition, and robustness in the face of noisy data, artificial neural networks are
important because of the light which they throw on the mechanism of brain function. For
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example, one can compare the classifier network shown in Figure 8.2 with the discoveries
of Kuffler, Hubel and Wessel concerning pattern abstraction in the mammalian retina and
visual cortex.

Genetic algorithms

Genetic algorithms represent a second approach to machine learning and to computational
problems involving optimization. Like neural network computation, this alternative ap-
proach has been inspired by biology, and it has also been inspired by the Darwinian concept
of natural selection. In a genetic algorithm, the hardware is that of a conventional com-
puter; but the software creates a population and allows it to evolve in a manner closely
analogous to biological evolution.

One of the most important pioneers of genetic algorithms was John Henry Holland
(1929- ). After attending MIT, where he was influenced by Norbert Wiener, Holland worked
for IBM, helping to develop the 701. He then continued his studies at the University of
Michigan, obtaining the first Ph.D. in computer science ever granted in America. Between
1962 and 1965, Holland taught a graduate course at Michigan called “Theory of Adaptive
Systems”. His pioneering course became almost a cult, and together with his enthusiastic
students he applied the genetic algorithm approach to a great variety of computational
problems. One of Holland’s students, David Goldberg, even applied a genetic algorithm
program to the problem of allocating natural gas resources.

The programs developed by Holland and his students were modelled after the natural
biological processes of reproduction, mutation, selection and evolution. In biology, the
information passed between generations is contained in chromosomes - long strands of DNA
where the genetic message is written in a four-letter language, the letters being adenine,
thymine, guanine and cytosine. Analogously, in a genetic algorithm, the information is
coded in a long string, but instead of a four-letter language, the code is binary: The
chromosome-analogue is a long string of 0’s and 1’s, i.e., a long binary string. One starts
with a population that has sufficient diversity so that natural selection can act.

The genotypes are then translated into phenotypes. In other words, the information
contained in the long binary string (analogous to the genotype of each individual) cor-
responds to an entity, the phenotype, whose fitness for survival can be evaluated. The
mapping from genotype to phenotype must be such that very small changes in the binary
string will not produce radically different phenotypes. Prom the initial population, the
most promising individuals are selected to be the parents of the next generation, and of
these, the fittest are allowed produce the largest number of offspring. Before reproduction
takes place, however, random mutations and chromosome crossing can occur. For exam-
ple, in chromosome crossing, the chromosomes of two individuals are broken after the nth
binary digit, and two new chromosomes are formed, one with the head of the first old chro-
mosome and the tail of the second, and another with the head of the second and the tail of
the first. This process is analogous to the biological crossings which allowed Thomas Hunt
Morgan and his “fly squad” to map the positions of genes on the chromosomes of fruit
flies, while the mutations are analogous to those studied by Hugo de Vries and Hermann
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J. Muller.

After the new generation has been produced, the genetic algorithm advances the time
parameter by a step, and the whole process is repeated: The phenotypes of the new gener-
ation are evaluated and the fittest selected to be parents of the next generation; mutation
and crossings occur; and then fitness-proportional reproduction. Like neural networks,
genetic algorithms are the subject of intensive research, and evolutionary computation is
a rapidly growing field.

Evolutionary methods have been applied not only to software, but also to hardware.
Some of the circuits designed in this way defy analysis using conventional techniques - and
yet they work astonishingly well.

Artificial life

As Aristotle pointed out, it is difficult to define the precise border between life and nonlife.
It is equally difficult to give a precise definition of artificial life. Of course the term means
“life produced by humans rather than by nature”, but what is life? Is self-replication the
only criterion? The phrase "produced by humans” also presents difficulties. Humans have
played a role in creating domestic species of animals and plants. Can cows, dogs, and
high-yield wheat varieties be called “artificial life” ? In one sense, they can. These species
and varieties certainly would not have existed without human intervention.

We come nearer to what most people might call “artificial life” when we take parts of
existing organisms and recombine them in novel ways, using the techniques of biotechnol-
ogy. For example, Steen Willadsen[”} working at the Animal Research Station, Cambridge
England, was able to construct chimeras by operating under a microscope on embryos at
the eight-cell stage. The zona pelucida is a transparent shell that surrounds the cells of the
embryo. Willadsen was able to cut open the zona pelucida, to remove the cells inside, and
to insert a cell from a sheep embryo together with one from a goat embryo. The chimeras
which he made in this way were able to grow to be adults, and when examined, their
cells proved to be a mosaic, some cells carrying the sheep genome while others carried the
genome of a goat. By the way, Willadsen did not create his chimeras in order to produce
better animals for agriculture. He was interested in the scientifically exciting problem of
morphogenesis: How is the information of the genome translated into the morphology of
the growing embryo?

Human genes are now routinely introduced into embryos of farm animals, such as pigs
or sheep. The genes are introduced into regulatory sequences which cause expression in
mammary tissues, and the adult animals produce milk containing human proteins. Many
medically valuable proteins are made in this way. Examples include human blood-clotting
factors, interleukin-2 (a protein which stimulates T-lymphocytes), collagen and fibrinogen
(used to treat burns), human fertility hormones, human hemoglobin, and human serum
albumin.

10 Willadsen is famous for having made the first verified and reproducible clone of a mammal. In 1984
he made two genetically identical lambs from early sheep embryo cells.
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Transgenic plants and animals in which the genes of two or more species are inherited
in a stable Mendelian way have become commonplace in modern laboratory environments,
and, for better or for worse, they are also becoming increasingly common in the external
global environment. These new species might, with some justification, be called “artificial
life”.

A long period of molecular evolution probably preceded the evolution of cells. In the
early 1970’s, S. Spiegelman performed a series of experiments in which he demonstrated
that artificial molecular evolution can be made to take place in vitro. Spiegelman prepared
a large number of test tubes in which RNA replication could take place. The aqueous solu-
tion in each of the test tubes consisted of RNA replicase, ATP, UTP (uracil triphosphate),
GTP (guanine triphosphate), CTP (cytosine triphosphate) and buffer. He then introduced
RNA from a bacteriophage into the first test tube. After a predetermined interval of time,
during which replication took place, Spiegelman transferred a drop of solution from the
first test tube to a new tube, uncontaminated with RNA. Once again, replication began
and after an interval a drop was transferred to a third test tube. Spiegelman repeated
this procedure several hundred times, and at the end he was able to demonstrate that the
RNA in the final tube differed from the initial sample, and that it replicated faster than
the initial sample. The RNA had evolved by the classical Darwinian mechanisms of muta-
tion and natural selection. Mistakes in copying had produced mutant RNA strands which
competed for the supply of energy-rich precursor molecules (ATP, UTP, GTP and CTP).
The most rapidly-reproducing mutants survived. Was Spiegelman’s experiment merely a
simulation of an early stage of biological evolution? Or was evolution of an extremely
primitive life-form actually taking place in his test tubes?

G.F. Joyce, D.P. Bartel and others have performed experiments in which strands of
RNA with specific catalytic activity (ribozymes) have been made to evolve artificially from
randomly coded starting populations of RNA. In these experiments, starting populations
of 1013 to 1015 randomly coded RNA molecules are tested for the desired catalytic activity,
and the most successful molecules are then chosen as parents for the next generation. The
selected molecules are replicated many times, but errors (mutations) sometimes occur in
the replication. The new population is once again tested for catalytic activity, and the
process is repeated. The fact that artificial evolution of ribozymes is possible can perhaps
be interpreted as supporting the “RNA world” hypothesis, i.e. the hypothesis that RNA
preceded DNA and proteins in the early history of terrestrial life.

John von Neumann speculated on the possibility of constructing artificial self-reproducing
automata. In the early 1940’s, a period when there was much discussion of the Univer-
sal Turing Machine, he became interested in constructing a mathematical model of the
requirements for self-reproduction. Besides the Turing machine, another source of his in-
spiration was the paper by Warren McCulloch and Walter Pitts entitled A logical calculus
of the ideas immanent in nervous activity, which von Neumann read in 1943. In his first
attempt (the kinematic model), he imagined an extremely large and complex automaton,
floating on a lake which contained its component parts.

Von Neumann’s imaginary self-reproducing automaton consisted of four units, A, B, C
and D. Unit A was a sort of factory, which gathered component parts from the surrounding
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lake and assembled them according to instructions which it received from other units. Unit
B was a copying unit, which reproduced sets of instructions. Unit C was a control appa-
ratus, similar to a computer. Finally D was a long string of instructions, analogous to the
“tape” in the Turing machine. In von Neumann’s kinematic automaton, the instructions
were coded as a long binary number. The presence of what he called a “girder” at a given
position corresponded to 1, while its absence corresponded to 0. In von Neumann’s model,
the automaton completed the assembly of its offspring by injecting its progeny with the
duplicated instruction tape, thus making the new automaton both functional and fertile.

In presenting his kinematic model at the Hixton Symposium (organized by Linus Paul-
ing in the late 1940’s), von Neumann remarked that “...it is clear that the instruction [tape]
is roughly effecting the function of a gene. It is also clear that the copying mechanism B
performs the fundamental act of reproduction, the duplication of the genetic material,
which is clearly the fundamental operation in the multiplication of living cells. It is also
easy to see how arbitrary alterations of the system...can exhibit certain traits which ap-
pear in connection with mutation, lethality as a rule, but with a possibility of continuing
reproduction with a modification of traits.”

It is very much to von Neumann’s credit that his kinematic model (which he invented
several years before Crick and Watson published their DNA structure) was organized in
much the same way that we now know the reproductive apparatus of a cell to be organized.
Nevertheless he was dissatisfied with the model because his automaton contained too many
“black boxes”. There were too many parts which were supposed to have certain functions,
but for which it seemed very difficult to propose detailed mechanisms by which the functions
could be carried out. His kinematic model seemed very far from anything which could
actually be buil']

Von Neumann discussed these problems with his close friend, the Polish-American
mathematician Stanislaw Ulam, who had for a long time been interested in the concept of
self-replicating automata. When presented with the black box difficulty, Ulam suggested
that the whole picture of an automaton floating on a lake containing its parts should
be discarded. He proposed instead a model which later came to be known as the Cellular
Automaton Model. In Ulam’s model, the self-reproducing automaton lives in a very special
space. For example, the space might resemble an infinite checkerboard, each square would
constitute a multi-state cell. The state of each cell in a particular time interval is governed
by the states of its near neighbors in the preceding time interval according to relatively
simple laws. The automaton would then consist of a special configuration of cell states, and
its reproduction would correspond to production of a similar configuration of cell states in
a neighboring region of the cell lattice.

Von Neumann liked Ulam’s idea, and he began to work in that direction. However, he

11 Von Neumann’s kinematic automaton was taken seriously by the Mission IV Group, part of a ten-
week program sponsored by NASA in 1980 to study the possible use of advanced automation and robotic
devices in space exploration. The group, headed by Richard Laing, proposed plans for self-reproducing
factories, designed to function on the surface of the moon or the surfaces of other planets. Like von
Neumann’s kinetic automaton, to which they owed much, these plans seemed very far from anything that
could actually be constructed.
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wished his self-replicating automaton to be able to function as a universal Turing machine,
and therefore the plans which he produced were excessively complicated. In fact, von
Neumann believed complexity to be a necessary requirement for self-reproduction. In his
model, the cells in the lattice were able to have 29 different states, and the automaton
consisted of a configuration involving hundreds of thousands of cells. Von Neumann’s
manuscript on the subject became longer and longer, and he did not complete it before his
early death from prostate cancer in 1957. The name “cellular automaton” was coined by
Arthur Burks, who edited von Neumann’s posthumous papers on the theory of automata.

Arthur Burks had written a Ph.D. thesis in philosophy on the work of the nineteenth
century thinker Charles Sanders Pierce, who is today considered to be one of the founders
of semiotic§?] He then studied electrical engineering at the Moore School in Philadelphia,
where he participated in the construction of ENIAC, one of the first general purpose
electronic digital computers, and where he also met John von Neumann. He worked with
von Neumann on the construction of a new computer, and later Burks became the leader
of the Logic of Computers Group at the University of Michigan. One of Burks’ students at
Michigan was John Holland, the pioneer of genetic algorithms. Another student of Burks,
E.F. Codd, was able to design a self-replicating automaton of the von Neumann type
using a cellular automaton system with only 8 states (as compared with von Neumann’s
29). For many years, enthusiastic graduate students at the Michigan group continued to
do important research on the relationships between information, logic, complexity and
biology.

Meanwhile, in 1968, the mathematician John Horton Conway, working in England at
Cambridge University, invented a simple game which greatly increased the popularity of
the cellular automaton concept. Conway’s game, which he called “Life”, was played on
an infinite checker-board-like lattice of cells, each cell having only two states, “alive” or
“dead”. The rules which Conway proposed are as follows: “If a cell on the checkerboard
is alive, it will survive in the next time step (generation) if there are either two or three
neighbors also alive. It will die of overcrowding if there are more than three live neighbors,
and it will die of exposure if there are fewer than two. If a cell on the checkerboard is
dead, it will remain dead in the next generation unless exactly three of its eight neighbors
is alive. In that case, the cell will be 'born’ in the next generation”.

Originally Conway’s Life game was played by himself and by his colleagues at Cam-
bridge University’s mathematics department in their common room: At first the game was
played on table tops at tea time. Later it spilled over from the tables to the floor, and tea
time began to extend: far into the afternoons. Finally, wishing to convert a wider audience
to his game, Conway submitted it to Martin Gardner, who wrote a popular column on
“Mathematical Games” for the Scientific American. In this way Life spread to MIT’s Ar-
tificial Intelligence Laboratory, where it created such interest that the MIT group designed
a small computer specifically dedicated to rapidly implementing Life’s rules.

The reason for the excitement about Conway’s Life game was that it seemed capable
of generating extremely complex patterns, starting from relatively simple configurations

12 Semiotics is defined as the study of signs (see Appendix 2).
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and using only its simple rules. Ed Fredkin, the director of MIT’s Artificial Intelligence
Laboratory, became enthusiastic about cellular automata because they seemed to offer a
model for the way in which complex phenomena can emerge from the laws of nature, which
are after all very simple. In 1982, Fredkin (who was independently wealthy because of a
successful computer company which he had founded) organized a conference on cellular
automata on his private island in the Caribbean. The conference is notable because one
of the participants was a young mathematical genius named Stephen Wolfram, who was
destined to refine the concept of cellular automata and to become one of the leading
theoreticians in the field™]

One of Wolfram’s important contributions was to explore exhaustively the possibilities
of 1-dimensional cellular automata. No one before him had looked at 1-dimensional CA’s,
but in fact they had two great advantages: The first of these advantages was simplicity,
which allowed Wolfram to explore and classify the possible rule sets. Wolfram classified the
rule sets into 4 categories, according to the degree of complexity which they generated. The
second advantage was that the configurations of the system in successive generations could
be placed under one another to form an easily-surveyed 2-dimensional visual display. Some
of the patterns generated in this way were strongly similar to the patterns of pigmentation
on the shells of certain molluscs. The strong resemblance seemed to suggest that Wolfram’s
1-dimensional cellular automata might yield insights into the mechanism by which the
pigment patterns are generated.

In general, cellular automata seemed to be promising models for gaining insight into
the fascinating and highly important biological problem of morphogenesis: How does the
fertilized egg translate the information on the genome into the morphology of the growing
embryo, ending finally with the enormously complex morphology of a fully developed and
fully differentiated multicellular animal? Our understanding of this amazing process is
as yet very limited, but there is evidence that as the embryo of a multicellular animal
develops, cells change their state in response to the states of neighboring cells. In the
growing embryo, the “state” of a cell means the way in which it is differentiated, i.e.,
which genes are turned on and which off - which information on the genome is available
for reading, and which segments are blocked. Neighboring cells signal to each other by
means of chemical messengersE[]. Clearly there is a close analogy between the way complex
patterns develop in a cellular automaton, as neighboring cells influence each other and
change their states according to relatively simple rules, and the way in which the complex
morphology of a multicellular animal develops in the growing embryo.

Conway’s Life game attracted another very important worker to the field of cellular
automata: In 1971, Christopher Langton was working as a computer programmer in the
Stanley Cobb Laboratory for Psychiatric Research at Massachusetts General Hospital.
When colleagues from MIT brought to the laboratory a program for executing Life, Langton
was immediately interested. He recalls “It was the first hint that there was a distinction

13 As many readers probably know, Stephen Wolfram was also destined to become a millionaire by
inventing the elegant symbol-manipulating program system, Mathematica.

14 We can recall the case of slime mold cells which signal to each other by means of the chemical
messenger, cyclic AMP.



326 A HISTORY OF THE EARTH

between the hardware and the behavior which it would support... You had the feeling
that there was something very deep here in this little artificial universe and its evolution
through time. [At the lab] we had a lot of discussions about whether the program could
be open ended - could you have a universe in which life could evolve?”

Later, at the University of Arizona, Langton read a book describing von Neumann’s
theoretical work on automata. He contacted Arthur Burks, von Neumann’s editor, who
told him that no self-replicating automaton had actually been implemented, although E.F.
Codd had proposed a simplified plan with only 8 states instead of 29. Burks suggested to
Langton that he should start by reading Codd’s book.

When Langton studied Codd’s work, he realized that part of the problem was that
both von Neumann and Codd had demanded that the self-reproducing automaton should
be able to function as a universal Turing machine, i.e., as a universal computer. When
Langton dropped this demand (which he considered to be more related to mathematics
than to biology) he was able to construct a relatively simple self-reproducing configuration
in an 8-state 2-dimensional lattice of CA cells. As they reproduced themselves, Langton’s
loop-like cellular automata filled the lattice of cells in a manner reminiscent of a growing
coral reef, with actively reproducing loops on the surface of the filled area, and “dead”
(nonreproducing) loops in the center.

Langton continued to work with cellular automata as a graduate student at Arthur
Burks’ Logic of Computers Group at Michigan. His second important contribution to
the field was an extension of Wolfram’s classification of rule sets for cellular automata.
Langton introduced a parameter A to characterize various sets of rules according to the
type of behavior which they generated. Rule sets with a value near to the optimum (A
= 0.273) generated complexity similar to that found in biological systems. This value of
Langton’s A parameter corresponded to a borderline region between periodicity and chaos.

After obtaining a Ph.D. from Burks’ Michigan group, Christopher Langton moved to the
Center for Nonlinear Studies at Los Alamos, New Mexico, where in 1987 he organized an
“Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems” - the first
conference on artificial life ever held. Among the participants were Richard Dawkins, Astrid
Lindenmayer, John Holland, and Richard Laing. The noted Oxford biologist and author
Richard Dawkins was interested in the field because he had written a computer program
for simulating and teaching evolution. Astrid Lindenmayer and her coworkers in Holland
had written programs capable of simulating the morphogenesis of plants in an astonishingly
realistic way. As was mentioned above, John Holland pioneered the development of genetic
algorithms, while Richard Laing was the leader of Nasals study to determine whether self-
reproducing factories might be feasible.

Langton’s announcement for the conference, which appeared in the Scientific American,
stated that “Artificial life is the study of artificial systems that exhibit behavior charac-
teristic of natural living systems...The ultimate goal is to extract the logical form of living
systems. Microelectronic technology and genetic engineering will soon give us the capabil-
ity to create new life in silico as well as in vitro. This capacity will present humanity with
the most far-reaching technical, theoretical, and ethical challenges it has ever confronted.
The time seems appropriate for a gathering of those involved in attempts to simulate or
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synthesize aspects of living systems.”

In the 1987 workshop on artificial life, a set of ideas which had gradually emerged dur-
ing the previous decades of work on automata and simulations of living systems became
formalized and crystallized: All of the participants agreed that something more than re-
ductionism was needed to understand the phenomenon of life. This belief was not a revival
of vitalism; it was instead a conviction that the abstractions of molecular biology are not
in themselves sufficient. The type of abstraction found in Darwin’s theory of natural se-
lection was felt to be nearer to what was needed. The viewpoints of thermodynamics and
statistical mechanics were also helpful. What was needed, it was felt, were insights into
the flow of information in complex systems; and computer simulations could give us this
insight. The fact that the simulations might take place in silico did not detract from their
validity. The logic and laws governing complex systems and living systems were felt to be
independent of the medium.

As Langton put it, “The ultimate goal of artificial life would be to create ’life’ in some
other medium, ideally a virtual medium where the essence of life has been abstracted from
the details of its implementation in any particular model. We would like to build models
that are so lifelike that they cease to become models of life and become examples of life
themselves.”

Most of the participants at the first conference on artificial life had until then been
working independently, not aware that many other researchers shared their viewpoint.
Their conviction that the logic of a system is largely independent of the medium echoes
the viewpoint of the Macy Conferences on cybernetics in the 1940’s, where the logic of
feedback loops and control systems was studied in a wide variety of contexts, ranging from
biology and anthropology to computer systems. A similar viewpoint can also be found in
biosemiotics (Appendix 2), where, in the words of the Danish biologist Jesper Hoffmeyer,
“the sign, rather than the molecule” is considered to be the starting point for studying
life. In other words, the essential ingredient of life is information; and information can be
expressed in many ways. The medium is less important than the message.

The conferences on artificial life have been repeated each year since 1987, and European
conferences devoted to the new and rapidly growing field have also been organized. Langton
himself moved to the Santa Fe Institute, where he became director of the institute’s artificial
life program and editor of a new journal, Artificial Life. The first three issues of the journal
have been published as a book by the MIT Press, and the book presents an excellent
introduction to the field.

Among the scientists who were attracted to the artificial life conferences was the biol-
ogist Thomas Ray, a graduate of Florida State University and Harvard, and an expert in
the ecology of tropical rain forests. In the late 1970’s, while he was working on his Har-
vard Ph.D., Ray happened to have a conversation with a computer expert from the MIT
Artificial Intelligence Lab, who mentioned to him that computer programs can replicate.
To Ray’s question “How?”, the Al man answered “Oh, it’s trivial.”

Ray continued to study tropical ecologies, but the chance conversation from his Cam-
bridge days stuck in his mind. By 1989 he had acquired an academic post at the University
of Delaware, and by that time he had also become proficient in computer programming.
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He had followed with interest the history of computer viruses. Were these malicious cre-
ations in some sense alive? Could it be possible to make self-replicating computer programs
which underwent evolution by natural selection? Ray considered John Holland’s genetic
algorithms to be analogous to the type of selection imposed by plant and animal breeders
in agriculture. He wanted to see what would happen to populations of digital organisms
that found their own criteria for natural selection - not humanly imposed goals, but self-
generated and open-ended criteria growing naturally out of the requirements for survival.

Although he had a grant to study tropical ecologies, Ray neglected the project and used
most of his time at the computer, hoping to generate populations of computer organisms
that would evolve in an open-ended and uncontrolled way. Luckily, before starting his work
in earnest, Thomas Ray consulted Christopher Langton and his colleague James Farmer at
the Center for Nonlinear Studies in New Mexico. Langton and Farmer realized that Ray’s
project could be a very dangerous one, capable of producing computer viruses or worms far
more malignant and difficult to eradicate than any the world had yet seen. They advised
Ray to make use of Turing’s concept of a virtual computer. Digital organisms created in
such a virtual computer would be unable to live outside it. Ray adopted this plan, and
began to program a virtual world in which his freely evolving digital organisms could live.
He later named the system “Tierra”.

Ray’s Tierra was not the first computer system to aim at open-ended evolution. Steen
Rasmussen, working at the Danish Technical University, had previously produced a system
called “VENUS” (Virtual Evolution in a Nonstochastic Universe Simulator) which simu-
lated the very early stages of the evolution of life on earth. However, Ray’s aim was not to
understand the origin of life, but instead to produce digitally something analogous to the
evolutionary explosion of diversity that occurred on earth at the start of the Cambrian era.
He programmed an 80-byte self-reproducing digital organism which he called “Ancestor”,
and placed it in Tierra, his virtual Garden of Eden.

Ray had programmed a mechanism for mutation into his system, but he doubted that
he would be able to achieve an evolving population with his first attempt. As it turned
out, Ray never had to program another organism. His 80-byte Ancestor reproduced and
populated his virtual earth, changing under the action of mutation and natural selection
in a way that astonished and delighted him.

In his freely evolving virtual zoo, Ray found parasites, and even hyperparasites, but he
also found instances of altruism and symbiosis. Most astonishingly of all, when he turned
off the mutations in his Eden, his organisms invented sex (using mechanisms which Ray
had introduced to allow for parasitism). They had never been told about sex by their
creator, but they seemed to find their own way to the Tree of Knowledge.

Thomas Ray expresses the aims of his artificial life research as follows{™| “Everything
we know about life is based on one example: Life on Earth. Everything we know about
intelligence is based on one example: Human intelligence. This limited experience burdens
us with preconceptions, and limits our imaginations... How can we go beyond our concep-
tual limits, find the natural form of intelligent processes in the digital medium, and work

15 T. Ray, http://www.hip.atr.co.jp/ ray/pubs/pubs.html
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with the medium to bring it to its full potential, rather than just imposing the world we
know upon it by forcing it to run a simulation of our physics, chemistry and biology?...”

“In the carbon medium it was evolution that explored the possibilities inherent in the
medium, and created the human mind. Evolution listens to the medium it is embedded
in. It has the advantage of being mindless, and therefore devoid of preconceptions, and
not limited by imagination.” “I propose the creation of a digital nature - a system of
wildlife reserves in cyberspace in the interstices between human colonizations, feeding
off unused CPU-cycles and permitted a share of our bandwidth. This would be a place
where evolution can spontaneously generate complex information processes, free from the
demands of human engineers and market analysts telling it what the target applications
are - a place for a digital Cambrian explosion of diversity and complexity...”

“It is possible that out of this digital nature, there might emerge a digital intelligence,
truly rooted in the nature of the medium, rather than brutishly copied from organic nature.
It would be a fundamentally alien intelligence, but one that would complement rather than
duplicate our talents and abilities.”

Have Thomas Ray and other “a—lifers”m created artificial living organisms? Or have
they only produced simulations that mimic certain aspects of life? Obviously the answer
to this question depends on the definition of life, and there is no commonly agreed-upon
definition. Does life have to involve carbon chemistry? The a-lifers call such an assertion
“carbon chauvinism”. They point out that elsewhere in the universe there may exist
forms of life based on other media, and their program is to find medium-independent
characteristics which all forms of life must have.

A living organism is a complex system produced by an input of thermodynamic infor-
mation in the form of Gibbs free energy. This incoming information keeps the system very
far away from thermodynamic equilibrium, and allows it to achieve a statistically unlikely
and complex configuration. The information content of any complex (living) system is a
measure of how unlikely it would be to arise by chance. With the passage of time, the
entropy of the universe increases, and the almost unimaginably improbable initial configu-
ration of the universe is converted into complex free-energy-using systems that could never
have arisen by pure chance. Life maintains itself and evolves by feeding on Gibbs free
energy, that is to say, by feeding on the enormous improbability of the initial conditions
of the universe.

All of the forms of artificial life that we have discussed derive their complexity from the
consumption of free energy. For example, Spiegelman’s evolving RNA molecules feed on the
Gibbs free energy of the phosphate bonds of their precursors, ATP, GTP, UTP, and CTP.
This free energy is the driving force behind artificial evolution which Spiegelman observed.
In his experiment, thermodynamic information in the form of high-energy phosphate bonds
is converted into cybernetic information.

Similarly, in the polymerase chain reaction, the Gibbs free energy of the phosphate
bonds in the precursor molecules ATP, TTP, GTP and CTP drives the reaction. With
the aid of the enzyme DNA polymerase, the soup of precursors is converted into a highly

16 Tn this terminology, ordinary biologists are “b-lifers”.
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improbable configuration consisting of identical copies of the original sequence. Despite the
high improbability of the resulting configuration, the entropy of the universe has increased
in the copying process. The improbability of the set of copies is less than the improbability
of the high energy phosphate bonds of the precursors.

The polymerase chain reaction reflects on a small scale, what happens on a much
larger scale in all living organisms. Their complexity is such that they never could have
originated by chance, but although their improbability is extremely great, it is less than
the still greater improbability of the configurations of matter and energy from which they
arose. As complex systems are produced, the entropy of the universe continually increases,
i.e., the universe moves from a less probable configuration to a more probable one.

In Thomas Ray’s experiments, the source of thermodynamic information is the electrical
power needed to run the computer. In an important sense one might say that the digital
organisms in Ray’s Tierra system are living. This type of experimentation is in its infancy,
but since it combines the great power of computers with the even greater power of natural
selection, it is hard to see where it might end.
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Chapter 8

SPACE EXPLORATION

8.1 Astronautics

Rocket timeline from Wikipedia

11th century AD - The first documented record of gunpowder and the
fire arrow, an early form of rocketry, appears in the Chinese text Wujing
Zongyao.

1650 - Artis Magnae Artilleriae pars prima (“Great Art of Artillery, the
First Part”) is printed in Amsterdam, about a year before the death of
its author, Kazimierz Siemienowicz.

1664 - A “space rocket” is imagined as a future technology to be studied
in France and its drawing is ordered by French finance minister Colbert;
designed by Le Brun on a Gobelins tapestry.

1798 - Tipu Sultan, the King of the state of Mysore in India, develops and
uses iron rockets against the British Army.

1801 - The British Army develops the Congreve rocket based on weapons
used against them by Tipu Sultan.

1806 - Claude Ruggieri, an Italian living in France, launched animals on
rockets and recovered them using parachutes. He was prevented from
launching a child by police.

1813 - “A Treatise on the Motion of Rockets” by William Moore - first
appearance of the rocket equation.

1818 - Henry Trengrouse demonstrates his rocket apparatus for projecting
a lifeline from a wrecked ship to the shore, later widely adopted.

e 1844 - William Hale invents the spin-stabilized rocket
e 1861 - William Leitch publishes an essay “A Journey Through Space” as

a humorous science fantasy story about a space gun launching a manned
spacecraft equipped with rockets for landing on the Moon, but eventually
used for another orbital maneuver.
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Figure 8.1: A jet-driven steam engine invented by Hero of Alexandria in the 1st
century A.D..

Figure 8.2: Rockets were used in warfare in China in the 11th century.
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Figure 8.3: Congreve rockets were used in the bombardment of Copenhagen in
1807. It was a terror attack on the civilian population, carried out although
no state of war existed between Denmark and England.

Figure 8.4: The Nazi V2 rocket, which launched the space age, was also used for
the terror bombardment of civilians.
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1902 - French cinema pioneer Georges Méliés directs A Trip to the Moon,
the first film about space travel.

1903 - Konstantin Tsiolkovsky begins a series of papers discussing the
use of rocketry to reach outer space, space suits, and colonization of the
Solar System. Two key points discussed in his works are liquid fuels and
staging.

1913 - Without knowing the work of Russian mathematician Konstantin
Tsiolkovsky, French engineer Robert Esnault-Pelterie derived the equa-
tions for space flight, produced a paper that presented the rocket equa-
tion and calculated the energies required to reach the Moon and nearby
planets.

1916 - first use of rockets (with the solid fuel Le Prieur rocket) for both
air-to-air attacks, and air to ground.

1922 - Hermann Oberth publishes his scientific work about rocketry and
space exploration: Die Rakete zu den Planetenrdumen (“By Rocket into
Planetary Space”).

1924 - Society for Studies of Interplanetary Travel founded in Moscow by
Konstantin Tsiolkovsky, Friedrich Zander and 200 other space and rocket
experts

1926 - Robert Goddard launches the first liquid fuel rocket. This is con-
sidered by some to be the start of the Space Age.

1927 - Verein fAir Raumschiffahrt (VIR - ”Spaceflight Society”) founded
in Germany.

1929 - Woman in the Moon, considered to be one of the first ”serious”
science fiction films.

1931 - Friedrich Schmiedl attempts the first rocket mail service in Austria

e 1933 - Sergei Korolev and Mikhail Tikhonravov launch the first liquid-

fueled rocket in the Soviet Union.

1935 - Emilio Herrera Linares from Spain designed and made the first
full-pressured astronaut suit, called the escafandra estratonautica. The
Russians then used a model of Herrera’s suit when first flying into space
of which the Americans would then later adopt when creating their own
space program.

1936 - Research on rockets begins at the Guggenheim Aeronautical Labo-
ratory at the California Institute of Technology (GALCIT), the predeces-
sor to the Jet Propulsion Laboratory, under the direction of Frank Malina
and Theodore von KérmA;n.

1937 - Peenemiinde Army Research Center founded in Germany.

e 1938 - The Projectile Development Establishment founded at Fort Hal-

stead for the United Kingdom’s research into military solid-fuel rockets.
1939 - Katyusha multiple rocket launchers are a type of rocket artillery
first built and fielded by the Soviet Union.
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e 1941 - French rocket EA-41 is launched, being the first European liquid
propellant working rocket[8](It was, however, preceded by the Peenemu-
nde A5 and Soviet experiments.)

e 1941 - Jet Assisted Take Off JATO installed on US Army Air Corp Er-
coupe aircraft occurred on 12 August in March Field, California.

e 1942 - Wernher von Braun and Walter Dornberger launch the first V-2
rocket at Peenemiinde in northern Germany.

e 1942 - A V-2 rocket reaches an altitude of 85 km.

e 1944 - The V-2 rocket MW 18014 reaches an altitude of 176 km, becoming
the first man-made object in space.

e 1945 - Lothar Sieber dies after the first vertical take-off manned rocket
flight in a Bachem Ba 349 “Natter”.

e 1945 - Operation Paperclip takes 1,600 German rocket scientists and tech-
nicians to the United States.

e 1945 - Operation Osoaviakhim takes 2,000 German rocket scientists and
technicians to the Soviet Union.

e 1946 - First flight of the Nike missile, later the first operational surface-
to-air guided missile.

® 1947 - Chuck Yeager achieves the first manned supersonic flight in a Bell
X-1 rocket-powered aircraft.

e 1949 - Willy Ley publishes The Conquest of Space.

e 1952 - 22 May, French Véronique 1 rocket is launched from the Algerian
desert.

e 1952 - Wernher von Braun discusses the technical details of a manned
exploration of Mars in Das Marsprojekt.

e 1953 - Colliers magazine publishes a series of articles on man’s future in
space, igniting the interest of people around the world. The series includes
numerous articles by Ley and von Braun, illustrated by Chesley Bonestell.

e 1956 - First launch of PGM-17 Thor, the first US ballistic missile and
forerunner of the Delta space launch rockets.

e 1957 - Launch of the first ICBM, the USSR’s R-7 (8K71), known to NATO
as the SS-6 Sapwood.

e 1957 - The USSR launches Sputnik 1, the first artificial satellite.

e 1958 - The U.S. launches Explorer 1, the first American artificial satellite,
on a Jupiter-C rocket.

e 1958 - US launches their first ICBM, the Atlas-B (the Atlas-A was a test
article only).

e 1961 - the USSR launches Vostok 1, Yuri Gagarin reached a height of 327
km above Earth and was the first man to orbit Earth.

e 1961 - US, a Mercury capsule named Freedom 7 with Alan B. Shepard,
spacecraft was launched by a Redstone rocket on a ballistic trajectory
suborbital flight. It was the first human space mission that landed with
pilot still in spacecraft, thus the first complete human spaceflight by FAI
definitions.
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1962 - The US launches Mercury MA-6 (Friendship 7) on an Atlas D
booster, John Glenn puts America in orbit.

1963 - The USSR launches Vostok 6, Valentina Tereshkova was the first
woman (and first civilian) to orbit Earth. She remained in space for nearly
three days and orbited the Earth 48 times.

1963 - US X-15 rocket-plane, the first reusable manned spacecraft (sub-
orbital) reaches space, pioneering reusability, carried launch and glide
landings.

1965 - USSR Proton rocket, highly successful launch vehicle with notable
payloads, Salyut 6 and Salyut 7, Mir, and ISS components.

1965 - Robert Salked investigates various single stage to orbit spaceplane
concepts.

1966 - USSR Luna 9, the first soft landing on the Moon.

1966 - USSR launches Soyuz spacecraft, longest-running series of space-
craft, eventually serving Soviet, Russian and International space missions.
1968 - USSR Zond 5, two tortoises and smaller biological Earthlings circle
the Moon and return safely to Earth.

1968 - US Apollo 8, the first men to reach and orbit the Moon.

1969 - US Apollo 11, first men on the Moon, first lunar surface extrave-
hicular activity.

1981 - US Space Shuttle pioneers reusability and glide landings.

1998 - US Deep Space 1 is first deep space mission to use an ion thruster
for propulsion.

1998 - Russia launch Zarya module which is the first part of the Interna-
tional Space Station.

2001 - Russian Soyuz spacecraft sent the first space tourist Dennis Tito
to International Space Station.

2004 - US-based, first privately developed, manned (suborbital) space-
flight, SpaceShipOne demonstrates reusability.

2008 - SpaceX - with their Falcon 1 rocket - became the first private entity
to successfully launch a rocket into orbit.

2012 - The SpaceX Dragon space capsule - launched aboard a Falcon 9
launch vehicle - was the first private spacecraft to successfully dock with
another spacecraft, and was also the first private capsule to dock at the
International Space Station.

2014 - First booster rocket returning from an orbital trajectory to achieve
a zero-velocity-at-zero-altitude propulsive vertical landing. The first-stage
booster of Falcon 9 Flight 9 made the first successful controlled ocean soft
touchdown of a liquid-rocket-engine orbital booster on April 18, 2014.
2015 - SpaceX’s Falcon 9 Flight 20 was the first time that the first stage
of an orbital rocket made a successful return and vertical landing.

2017 - SpaceX’s Falcon 9 SES-10 was the first time a used orbital rocket
made a successful return.
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Figure 8.5: Cosmonaut Yuri Gagarin (1934-1968) was the first man in space. On
12 April, 1961, his space capsule, Vostok 1, completed an orbit of the Earth.
Gagarin became an international celebrity, and was awarded many honors and
medals. He died in the crash of a routine MIG-15UTI training flight.

8.2 Exploration of the Earth’s Moon

In ancient times, the Greek philosopher Anaxagoras, who died in 428 BC, believed the
Moon to be a giant spherical rock that reflects the light of the sun. This non-religious view
of the heavens caused Anaxagoras to be persecuted and banished.

Aristarchus of Samos (¢.310-¢.230 BC), calculated the size of the Moon and its distance
from the Earth (by observing the shadow of the Earth on the Moon during an eclipse,
and the angles involved). He also calculated the distance from the Earth to the Sun. The
values that he obtained were not very accurate, but they showed the Sun to be enormous
in size in relation to the Earth and the Moon. As a result of his calculations he became
the first person to suggest a sun-centered model for the solar system.

In our own era, the Soviet Union was the first to send a rocket to the Moon, the un-
manned rocket Luna 2. which made a hard landing in September, 1959. Another Soviet
rocket, Luna 3, photographed the far side of the moon in October of the same year.

These and other Soviet successes initiated a “space race” between the United States
and the Soviet Union, and caused President John F. Kennedy to say to Congress, “...I
believe that this nation should commit itself to achieving the goal, before this decade is
out, of landing a man on the Moon and returning him safely to the Earth. No single
space project in this period will be more impressive to mankind, or more important in the
long-range exploration of space; and none will be so difficult or expensive to accomplish.”

In December, 1968, the crew of Apollo 8 became the first humans to enter a lunar
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orbit and to see the far side of the Moon. This success was followed by Apollo 11, in July,
1969, a manned spacecraft that made a soft landing on the Moon. Niel Armstrong, the
commander of the mission, became, famously, the first human to set foot on the Moon.

In 1970, the first lunar robot vehicle landed on the Moon. It was sent by the Soviet
Union and called “Lunokhod 1”.

The manned Apollo missions were eventually abandoned by the United States, but the
National Aeronautics and Space Administration (NASA) has continued to send missions
to photograph the Moon. Some of the photographs are shown below.
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Figure 8.6: A young ray impact crater blasted in the eroded wall of the partly
buried crater Hedin. It is distant from the starkly beautiful landscape Arm-
strong saw: the Apollo 11 landing site on Mare Tranquillitatis is more than
1000 kilometers to the east (NASA/GSFC/Arizona State University, Novem-
ber 3, 2018).
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8.3 Missions to Mars

Below we list a few of the many missions to Mars:

e Mars 4NM and Mars 5NM - projects intended by the Soviet Union for
heavy Marsokhod (in 1973 according to initial plan of 1970) and Mars
sample return (planned for 1975). The missions were to be launched on
the failed N1 rocket.

e Mars 5M (Mars-79) - double-launching Soviet sample return mission planned
to 1979 but cancelled due to complexity and technical problems

e Voyager-Mars - USA, 1970s - Two orbiters and two landers, launched by
a single Saturn V rocket.

e Vesta - the multiaimed Soviet mission, developed in cooperation with
European countries for realization in 1991-1994 but canceled due to the
Soviet Union disbanding, included the flyby of Mars with delivering the
aerostat and small landers or penetrators followed by flybys of 1 Ceres or
4 Vesta and some other asteroids with impact of penetrator on the one of
them.

e Mars Aerostat - Russian/French balloon part for cancelled Vesta mission
and then for failed Mars 96 mission,[71] originally planned for the 1992
launch window, postponed to 1994 and then to 1996 before being can-
celled.

e Mars Together, combined U.S. and Russian mission study in the 1990s.
To be launched by a Molinya with possible U.S. orbiter or lander.

e Mars Environmental Survey - set of 16 landers planned for 1999-2009

e Mars-98 - Russian mission including an orbiter, lander, and rover, planned
for 1998 launch opportunity as repeat of failured Mars 96 mission and
cancelled due to lack of funding.

e Mars Surveyor 2001 Lander - October 2001 - Mars lander (refurbished,
became Phoenix lander)

e Kitty Hawk - Mars airplane micromission, proposed for December 17,
2003, the centennial of the Wright brothers’ first flight. Its funding was
eventually given to the 2003 Mars Network project.[76]

e NetLander - 2007 or 2009 - Mars netlanders

e Beagle 3 - 2009 British lander mission meant to search for life, past or
present.

e Mars Telecommunications Orbiter - September 2009 - Mars orbiter for
telecommunications

e Sky-Sailor - 2014 - Plane developed by Switzerland to take detailed pic-
tures of Mars surface

e Mars Astrobiology Explorer-Cacher - 2018 rover concept, cancelled due to
budget cuts in 2011. Sample cache goal later moved to Mars 2020 rover.
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8.4 The Cassini-Huygens space probe

The Wikipedia article on Cassini-Huygens gives the following description of the probe:

The Cassini-Huygens space-research mission, commonly called Cassini, in-
volved a collaboration between NASA, the European Space Agency (ESA), and
the Italian Space Agency (ASI) to send a probe to study the planet Saturn and
its system, including its rings and natural satellites. The Flagship-class robotic
spacecraft comprised both NASA’s Cassini probe and ESA’s Huygens lander,
which landed on Saturn’s largest moon, Titan.Cassini was the fourth space
probe to visit Saturn and the first to enter its orbit. 